
Underapproximate
Reasoning at Scale

Peter O'Hearn

Lacework and University College London

HCSS 2023

Bi-Abductive symbolic
execution

node* p(list_item *y) {
 node *x, *z;
1 x=malloc(sizeof(list_item)); x->tail = 0;
2 z=malloc(sizeof(list_item)); z->tail = 0;
3 foo(x,y);
4 foo(x,z);
5 return x;
 }

Pre: list(x) * list(y)
 void foo(list_item *x,list_item *y)
Post: list(x)

list(y)emp

x ⇤⇥ 0 � z ⇤⇥ 0 � ?antiframe ⌅ list(x) � list(y) � ?framex ⇤⇥ 0 � z ⇤⇥ 0 � list(y) ⌅ list(x) � list(y) � z ⇤⇥ 0list(x) � z ⇤⇥ 0 � emp ⌅ list(x) � list(z) � emplist(x) � z ⇤⇥ 0 � ?antiframe ⌅ list(x) � list(z) � ?frame

Bi-abductive prover

list(x) � z ⇤⇥ 0
x ⇤⇥ 0 � z ⇤⇥ 0
x ⇥� 0
emp

list(ret)
list(x)

CI system

Phabricator

Code reviewers

Developer

Performance tests
Continuous UI correctness tests

CI system

Product

INFER

post land batch:  
~0% fix rate

diff time continuous :
~70% fix rate

same analysis (Infer)

A stark lesson (2014)

* Open sourced in 2015. Used at
MSFT, AMZN,…

* Initially focus on mobile: Java+ObjC

* Since, C++, C#… Increasing

privacy focus

* 100k+ bugs caught+fixed b4 prod

P O'Hearn to M Hicks (2015)

RacerD: Feb-Oct 2016:  
 
* Race Detector based on
Concurrent Separation Logic 
 
* Apply to FB’s Android apps 
 
* Started making prototype

* Goal: automatically prove thread safety
of 100s k classes, keep proven via CI 

A team in NYC catches wind of initial work

1. High signal: actionable races that developers find useful; no need to (provably) find all.  

2. Inter-procedural: track data races involving many nested calls.  

3. Low friction: no reliance on manual annotations to specify which locks protect what
data.  

4. Fast: able to report in 15 minutes on modifications to a millions-of-lines codebase.  

5. Treatment of coarse-grained locking, but not fine-grained

Pivot: Be compositional, but under-
approximate

True Positives Theorem: The analyzer reports no false
positives (under certain assumptions)

Assumptions: (nondet()) for booleans, no recursion

under-approx of over-approx of under-approx

>2.5k concurrency issues detected+fixed

No false negatives reported from a year in prod

(modulo 3 analysis implementation bugs)

Ben Jaeger, FB Android engineer

RacerD Results

⊆ q

⊇

iff post(c) p

Incorrectness Logic

⊆ q

⊇
iff post(c) p

Incorrectness Logic

[z:42,x:1,y:2]

Ignore 

Infer.Pulse
• Analyzer for C++

lifetimes,  
numbers on 100s kLOC
codebase

• 20 disjunct limit versus 50
disjuncts 
(5 unrollings each)

• 20 is 2.75x wall clock
faster than 50

• 3.1x user time faster

• 20 find 97% of issues of
50

A duality

For under
approximate
reasoning

You must remember
information as you go
along a path, but you
get to forget some of
the paths

For
overapproximate
reasoning

You get to forget
information as you go
along a path, but you
must remember all the
paths.

Concretizing

(∃z . y == z * z) ⟸ y == 49

cf. KLEE, DART, SAGE

• The pragmatic analyzer
principle of concretizing
symbolic values
corresponds to the logical
principle of shrinking the
post-assertion

 

LFP if 
 

F continuous

Sound for underapprox

Not sound for overapprox

Testing + Verification

December 2021

Dev Prod

Agent, 
Agentless

An Attack Path

An Attack Path

Security Invariants

* service not internet accessible

* service has no critical OSS vulns 

* service has no access to RDS

An Attack Path

Security Invariants

* service not internet accessible

* service has no critical OSS vulns 

* service has no access to RDS

Intensional

A flow
* Computer grabs a snapshot 

(agentless) 

* Computer creates a graph,  
generates attack paths 

* CAA helps prioritise 

* Human chooses a path 
Establishes security invariant 

* Computer checks invariant

Under

Over

Over

Both

Under

Active Vuln Detection (Code aware agent,
Godefroid, Condra, ++)

* LW agent monitors network traffic, used in anomaly
detection (mixes under+over, to explain another day) 

* CAA extension monitors package activity 

* Under, but for a history rather than a snapshot 

* Soundness: if CAA says active, it was used
* Completeness: if CAA says inactive, it was not used

A flow
* Computer grabs a snapshot 

(agentless) 

* Computer creates a graph,  
generates attack paths 

* CAA helps prioritise 

* Human chooses a path 
Establishes security invariant 

* Computer checks invariant

Under

Over

Over

Both

Under

A flow
* Computer grabs a snapshot 

(agentless) 

* Computer creates a graph,  
generates attack paths 

* CAA helps prioritise 

* Human chooses a path 
Establishes security invariant 

* Computer checks invariant

Under

Over

Over

Both

Under

Dev Prod

* What I’m working on: 

* Shift that goodness left (speed) 

* Connect left and right (context, better together) 

* Signal at IDE, PR, Deploy times (underapprox
enables)

* Stay tuned!

