Underapproximate
Reasoning at Scale

HCSS 2023

Peter O Hearn

Lacework and University: Gollege London



Tutorial: How to Cook a Static Analyzer

or, The Surprising Effectiveness of Substructural
Proof Theory

Peter O'Hearn

Queen Mary, University of London

HCSS Conference, 21 May, 2009




Bi-Abductive symbolic
execution

2re s ist(x) S ist(y)

void foo(list_item “x,list_item “y)
LOSTISHX)

node* p(list_item *y){  He0([))
node *x, *z;

1 x=malloc(sizeof(list_item)); x->tail = 0O;
2 z=malloc(sizeof(list_item)); z->tail = O;
3 foo(Xx,y);
4 foo(x,z);
5 return Xx; ||S1:(:L‘)

; list(

emp
e
st o s ()

Si-abductive prover




Facebook Acquires Assets Of UK Mobile Bug-
Checking Software Developer Monoidics

Josh Constine (@joshconstine

facebook



Code reviewers

JIZLJXLEZL

Developer Phabrlcator

Ll 3 ® » |t

Cl system

Product

Cl system

v

v Performance tests
Continuous Ul correctness tests




A stark lesson (2014)

® post [and batch:
~0% fix rate

% JIff time continuous :
~70% fix rate

® same analysis (Infer)



[ facebook /infer  public [\ Notifications % Fork 1.9k ¥ Star 13.9k

<> Code (©) Issues 376 §9 Pullrequests 6 () Actions [ Projects [ Wiki

* Open sourced In 2015. Used at
MSFET, AMZN,...

* |Initially focus on mobile: Java+0ObjC

* Since, C++, G#... Increasing
privacy focus

* 100k+ bugs caught+fixed b4 prod




P O'Hearn to M Hicks (2015

ograms without

jrammers ana man

y ’ '
Tav | V¢l s
l' .v"l" L" LC' ! \.f ) ll -H' \.‘_“ r j r




RacerD: Feb-Oct 201 6:

* Race Detector based on
Concurrent Separation Logic

* Apply to FB’s Android apps
* Started making prototype

* Goal: automatically prove thread safety
of 100s k classes, keep proven via Cl



A team in NYC catches wind of initial work

Sam Blackshear is with Jeremy Dubreil.
October 14, 2016 - Formatted

Infer status update

There's also a fancier concurrency analysis in the works for
checking that @ThreadSafe -annotated classes are actually thread

safe.

Will the eventual thread safe annotation be recursive? Will it check
that dependencies, at least how they're used, are thread safe?

Hey Peter! Jason here from Android Feed
Rendering. | usually work in NYC but I'm in
LON until Thursday. | hear you wrote
@ThreadSafe. I'd love to talk about it and
how it could SO
your team has some context. Do you have
time to chat in person?



Pivot: Be compositional, but under-
approximate

1. High signal: actionable races that developers find useful; no need to (provably) find all.
2. Inter-procedural: track data races involving many nested calls.

3. Low friction: no reliance on manual annotations to specify which locks protect what
data.

4. Fast: able to report in 15 minutes on modifications to a millions-of-lines codebase.

5. Treatment of coarse-grained locking, but not fine-grained



Threading information is used to limit the amount of synchronization required. As a comment
from the original code explains: “mCount is written to only by the main thread with the lock held,
read from the main thread with no lock held, or read from any other thread with the lock held."
Bottom: unsafe additions to RaceWithMainThread . java.

I @ThreadSafe 8 int unprotectedReadOnMainThread_ 0K () {

2 <class RaceWithMainThread { 9 OurThreadUtils.assertMainThread () ;

3 int mCount; 10 return mCount;

4 void protectedWriteOnMainThread_O0K() { 11 }

5 OurThreadUtils.assertMainThread (); 12 synchronized int protectedReadOffMainThread_OK() {
6 synchronized (this) { mCount = 1; } 13 return mCount;

7 } 14 }

}2 ;iﬁi:i::iiigt:gzgnainThread_BAD() { ég int unprotectedReadOffMainThread_BAD () {

17 mCount = 2; return mCount;

18 } 21 }



True Positives Theorem: The analyzer reports no false
positives (under certain assumptions)

Assumptions: (nondet()) for booleans, no recursion

under-approx of over-approx of under-approx



RacerD Results

>2.8k concurrency issues detected+fixed

No false negatives reported from a year in prod
(modulo 3 analysis implementation bugs)

Without Infer, multithreading in News

Feed would not have been tenable
Ben Jaeger, FB Android engineer



Incorrectness Logic

[plelq] i poste)p c q




Incorrectness Logic

|beforelprogram|after| iff post(before)



[plelq]  iff postc)p 2 q

/* presumes: [z==11] */
1f (x 1s even) {
i1f (y 1s odd) {
z=472
oo}
/* achieves: [z==42] x/

/%3%[2:42,x:1 V2] PICAgAT)

{r1Ciq}

N DN B W N




AN N B W N -

[plelql

/* presumes:

iff  post(c)p 2 q

[z==11] */

if (x 1s even) {
if (y is odd) {

z=42
b

/+ achieves:

[z==42 && (x 1s even) && (y 1s odd) ]

*/



{ptC{g AT}
{rCiq}

Consequence

p'<=p [plCleq] q&=4’
[p"1Cle:q']

1pIClg1 V q2]
e




Infer.Pulse

Analyzer for C++
lifetimes,

numbers on 100s kLOC
codebase

20 disjunct limit versus 50
disjuncts
(5 unrollings each)

20 is 2.75x wall clock
faster than 50

3.1x user time faster

20 find 97% of issues of
50



For

A duality

overapproximate

reasoning

You

information as you go
along a path, but you

paths.

all the

For under
approximate
reasoning

You

information as you go

along a path, but you
some of

the paths

»



Concretizing

39 void difficult ()
40 /*achieves: [ok: y==49 && x==1] */

41 { int z = nondet ();
42 if (y == zx2)
43 {x=1;}
H }
Consequence
p'=p [plCleql q=4¢ = % _
i z.y==2%7) & y==49
[p'IClerq ] (3z.y ) Y

cf. KLEE, DART, SAGE

The pragmatic analyzer
principle of concretizing
symbolic values
corresponds to the logical
principle of shrinking the
post-assertion



Underapproximate and Overapproximate Semantics
assume F < F < F monotone (where G < H iff VX.GX C HX)

Fact (where — is lattice C) NOt sound for overapprox

FJ_HH-—)FnJ_—}---—)UnFnJ_

el | 1

l—FL ——++ — F'L —— -+ — ||, F"L LEP If

\x T T T = continuous

El‘)""}ﬂnl—>“°—)un_nl

Sound for underapprox




e Theorem (Soundness and Completeness)
[p|Cle: q] 1s true iff is it provable.

For [p](C)*| ok: ¢| completeness, use

p(n) = {o | you can get back from o to some state in p by executing C backwards n times}.

For [p](C)*[er: q| case use frontier idea and Iterate Two.



Empty under-approximates
[p]Cle: false]
Unit

[plskip|ok: p|[er: false]

Iterate zero

[pIC*[ok: p]

Choice (where i = 10r2)

[pICile: q]
[PIC1 + Cale:q]

Assignment

[plx = e[ok: 3x" .p[x" /x| A x = e[x”/x]|[er: false]

Constancy
[PICle:q]
[p A fICle:g A f]

Substitution [

[pICle:q]
([pICle: gq])(e/x)

Mod(C) N Free(f) =0

(Free(e) U {x}) N Free(C) = 0

Consequence Disjunction
p<p [plCleql g<=4¢ [p1lCle:q1]  [p2]Cle: g2]
[p'1Cleq'] [p1 V p2]Cle:q1 V q2]

Sequencing (short-circuit)

[plCyler:r]
[pICy;Coler: 1]

Iterate non-zero
[pIC*;Cle: q]
[pIC*[e:q]

Error

[plerror()| ok: false|[er: p]

Sequencing (normal)

[pIC1lok:q] [qlCz[e:r]
[p]Cy; Cale:r]

Backwards Variant (where n fresh)
[p(n) A nat(n)]C|ok: p(n + 1) A nat(n)]|
[p(0)]C* [ok: Tn.p(n) A nat(n)]

Assume

[plassume B|ok: p A B|er: false]

Nondet Assignment

[plx = nondet()| ok: 3x’p]|[er: false|

Local Variable

[p]C(y/x)|€: q]

[p]local x.Cle: Ty.q]

y & Free(p,C)

Substitution 11

[pICle:q]

([p]Cle: qD(y/x)

y ¢ Free(p,C, q)



Program testing can be used to
show the presence of bugs, but
never to show their absence!

This paper threatens
to make bug finding
actually respectable




December 2021

: Peter O'Hearn - You coo
\Y@ Engineering Director at Lacework
yr« ®

After 8+ great years at Facebook, it's time to #LaceUp!

I'm joining Lacework as the company'’s first engineer in London, driving
work on code analysis (which complements and shifts left the current
blackbox analytics offering). My main focus will be to make code

reasoning useful for the many and not just the few; "proofs for the
masses!"



c LACEWORK Platform  Solutions  Customers  Partners  Resources

ALERT DETAILS
e‘ : ' I I e ' O ' I l Reverse Shell Connection
[. Critical J [ OpenJ

Why: recurring violation for process user/bin/bash

c C ' l When: first time seen on 2-February 2023

Get the data-driven cloud-native application Details Investigations _Related Alerts
protection platform (CNAPP) CONNECTED RISKS

Exposure Polygraph®




Dev Prod

ﬁ

Agent,
Agentless




Internet

An Attack Path

®

o8 &

way ELB Security group Kubernetes service

&

Security group

RDS



An Attack Path

Security Invariants

* service not internet accessible
* service has no critical OSS vulns

* service has no access to RDS

= (([)
AV



An Attack Path

Internet Internet gaoteway ELB Security group Kubernetes service Security group

Security Invariants

* service not internet accessible

* service has no critical OSS vulns

* service has no access to RDS




A flow

Computer grabs a snapshot
(agentless)

Combputer creates a graph,
generates attack paths

Human chooses a path
Establishes security invariant

Computer checks invariant




Active Vuln Detection (Code aware agent,
Godefroid, Condra, ++)

LW agent monitors network traffic, used in anomaly
detection (mixes under+over, to explain another day)

CAA extension monitors package activity
Under, but for a history rather than a snapshot

Soundness: if CAA says active, it was used
Completeness: if CAA says inactive, it was not used



NVD Critical vulnerabilities » 100% of vulnerabilities

Eliminates based on attack path

Vuln on internet-exposed . A
analysis

hosts and containers

_ RiR _ » Eliminates based on third party
Vulns actively exploited in the wild feeds and Lacework Labs research

Eliminates based on active vuln

Vuln within active software g F :
packages etection
0
Most risky vuln for > 1 O /o of critical vulnerabilities
your unigue env that matter most

Figure 2: How the custom risk-based vulnerability score is determined



A flow

Computer grabs a snapshot
(agentless)

Combputer creates a graph,
generates attack paths

Human chooses a path
Establishes security invariant

Computer checks invariant




A flow

Computer grabs a snapshot
(agentless)

Combputer creates a graph,
generates attack paths

CAA helps prioritise

Human chooses a path
Establishes security invariant

Computer checks invariant




Dev Prod

ﬁ

* What I'm working on:
* Shift that goodness left (speed)
* Connect left and right (context, better together)

* Signal at IDE, PR, Deploy times (underapprox
enables)

* Stay tuned!



