
Bogor/Kiasan:
A Contract-based Verification and
Test-Case Generation Framework

SAnToS Laboratory, Kansas State University, USA

William (Xianghua) Deng Jooyong Lee
(BRICS, DK)

Robby

US Army Research Office (ARO)
US National Science Foundation (NSF)
US Air Force Office of Scientific Research (AFOSR)

Lockheed Martin ATL (Cherry Hill, NJ)
Rockwell Collins Advanced Technology Center
IBM Eclipse

Support
John Hatcliff

Implementation Level Specification

function FindSought
 (A: Table; Sought: Integer) return Index;
--# pre for some M in Index => (A(M) = Sought);
--# return Z => ((A(Z) = Sought) and
--# (for all M in Index range 1 .. (Z - 1) =>
--# (A(M) /= Sought)));

“SPARK Examiner with Run-time Checker…”, p. 22

Implementation level specification & checking plays an important role in
developing high-assurance systems

Simple pre-condition…

Post-condition constraining return value to
inputs…

procedure Operate;
--# global out KeyStore.RotorValue,Encrypted;
--# in out KeyStore.SymmetricKey;
--# in Clear;
--# derives
--# KeyStore.SymmetricKey, KeyStore.RotorValue
--# from
--# KeyStore.SymmetricKey
--# &
--# Encrypted
--# from
--# Clear, KeyStore.SymmetricKey
--# ;

Implementation Level Specification

“Enforcing Security and Safety Models with an Information Flow Analysis Tool”

Implementation level specification & checking plays an important role in
developing high-assurance systems

Spark information flow
annotations…

Information flows from Clear,
KeyStore.SymmetricKey to Encrypted

Our Interests

 Implementation level specification and checking
for languages with rich object-oriented features
 focusing on properties of heap-allocated data
 specification and checking of both

 safety properties
 information flow/partitioning (not covered in this talk)

 deep integration with other quality assurance
methods such as testing

Due to the complexities of languages like Java, we don’t aim to provide all the
soundness guarantees of Spark/Praxis tools, but we do provide a rigorously justified
formal foundation and soundness on a bounded portion of a program’s state space.

…let’s now look at some of the issues that we aim to address

Trends In Software Development

 Frameworks
 collection of units targeted to a particular

application domain
 Apache Struts, JavaServerFaces, CLSA

 Component Middleware
 dictates a structure notion of reuseable

component
 provides extensive infrastructure and

services
 CCM, EJB, nesC, Bonobo

 Software Product Lines
 Drive down development time and costs

through systematic reuse of a managed
set of assets across families of similar
platforms

Building Software from Reusable Units

Benefits of Contracts

N(…..)

}

Pre-condition

Post-condition

Pre-condition

M(…,…,…) {
 ….

 N(…..)

}

Post-condition

No need to check body of N
when called from M – just
check that N’s precondition
is satisfied and assume N’s
post-condition after call

Check that method
conforms to its contract

Contracts enable compositional checking

Compositional Checking

 Compositional checking is the key to
scalability
 Allows each method to be checked in

isolation
 If a method is changed, only need to recheck

that one method (not the entire code base)
 Enables checking to be carried out in parallel

Software Contracts
Lightweight Contracts

 /*@ requires x != null;
 @ ensures last.value == x && \fresh(last);
 @*/
 protected void insert(Object x) {
 synchronized (putLock) {
 LinkedNode p = new LinkedNode(x);
 synchronized (last) refactoredInsert(p);
 if (waitingForTake > 0) putLock.notify();
 return;
 }
 }

linked list from java.util.concurrent

Simple pre-condition… Post-condition requires that object bound
to last not exist in the pre-state

Software Contracts
Strong Properties of Heap-allocated Data

/*@ behavior
 @ assignable head, head.next.value;
 @ ensures \result == null || (\exists LinkedNode n;
 @ \old(\reach(head).has(n));
 @ n.value == \result
 @ && !(\reach(head).has(n)));
 @*/
 protected Object extract() {
 Object x = null;
 LinkedNode first = head.next;
 if (first != null) {
 x = first.value;
 first.value = null;
 head = first;
 }
 return x;
 }

Frame conditions -- only these cells can be modified.

n is reachable from head
of the list in pre-state

linked list from java.util.concurrent

n is NOT reachable from head
of the list in the post-state

n’s value is
returned as
the result

…moving beyond ESC/Java

A Skeptic’s Questions

 It takes a lot of effort to write these contracts -- what’s
the payoff?
 please give me more than one way to leverage a contract!

 How does your approach integrate with other QA
techniques my team is already trained for?

 How can your tool and methodology be incrementally
introduced into my development workflow?

 Does this stuff scale?

Progress

 Practical contract checking technology for Java
 Supports automated checking of lightweight method

contracts
 Effective for statically eliminating many common run-

time errors such as null-pointer exceptions, array
bounds checking

Tools like ESC/Java have made good progress toward answering the skeptic’s
questions…

But a number of limitations remain…

 Don’t handle heap-allocated data very well
 Error messages are hard to decipher
 No direct connection to other quality assurance

techniques

Bogor, West Java, Indonesia

Extensible Framwork…

Core Checker Modules

Bogor, West Java, Indonesia

Bogor, West Java, Indonesia

Extensible Framwork…

Core Checker Modules

Bogor, West Java, Indonesia

Bogor Model Checking Framework

 unbounded dynamic creation
of threads and objects

 automatic memory
management (garbage
collection)

 virtual methods, …
 …, exceptions, etc.
 supports virtually all of Java

 new commands and expressions can
be added to the modeling language to
create domain specific modeling
languages

 modular architecture allows core
algorithms to easily be plugged and
unplugged

 … becoming a generic state-space
exploration framework

Direct support for… Extensible Framework…

Threads,
Objects,
Methods,
Exceptions, etc.

Domain-Specific
Abstractions+

Scheduling
Strategy

State-space
Exploration State

Representation

Core Checker Modules

Domain-Specific
Scheduler

Domain-
Specific
Search

Domain-Specific
State Rep.

Customized Checker Modules

…existing
modules…

Bogor Model Checking Framework

 wide collection of pedagogical
material…
 lecture slides
 streaming video lectures
 projects, exams, labs, quizzes

 used by at least five
universities at both the
undergraduate & graduate
level during the past year

 Funded in 2006-2007 by Lockheed
Martin Software Technology Initiative

 Bogor is the core of LM’s Thimble
framework for verification /
visualization of threading properties of
.NET systems

 Primary testbed is LM’s Horizon
satellite mission control system
software product line

Educational Material… Industrial Use…

University Research…

 a number of external research
projects
 MPI, BPEL (ICSE 2007), UML

State Charts, .NET
 over external 1300 downloads

…thank you for Eclipse support!

Bogor / Kiasan

 Combines symbolic execution with…
 model checking
 theorem proving
 constraint solving

 Formal operational semantics
 Relative soundness and completeness

proofs

 Quantifiable code behavior coverage
 Adjustable analysis cost/coverage

 Static (compositional/non-
compositional) checking of
 unspecified code
 light-weight specifications
 strong statements about heap

properties
 e.g., exceeding capabilities of

ESC/Java

 Provides helpful analysis feedback
 counter examples, visualization

using object graphs

 Automates some of developers’
tasks
 JUnit test case generation

Kiasan – A Bogor Extension for Symbolic Execution

“kiasan”
=

“symbolic”

Bogor / Kiasan Architecture

Kiasan
Modules

Concretization
POOC Constraint SolverBogor

Engine

.NET MSILJVM code

Spec Java
Contracts

JUnit Test Suite
+ Mock Objects

…

CVC Lite

.class Files +

Path Input/Output
Visualization

Integrated Verification Environment

 Quantifiable code behavior coverage
 Adjustable analysis cost/coverage

Integrated Verification Environment

Outline

 Lightweight property checking
 Input/Output Visualizations
 Strong contract checking
 Test case generation for open

systems

Tool Capabilities

 Basic concepts
 Dealing with the heap
 Correctness results and

distinguishing features

Foundations

Bogor / Kiasan

Symbolic Execution [King:ACM76]

x ← α, y ← β, z ← δ, Φ = { }

void foo(int x,
 int y,int z) {
 z = x + y;
 if (z > 0){
 z++;
 }
}

symbolic values constraints

x ← α, y ← β, z ← δ, Φ = { }

x ← α, y ← β, z ← π, Φ = {π = α + β }

void foo(int x,
 int y,int z) {
 z = x + y;
 if (z > 0){
 z++;
 }
}

z = x + y

new symbolic value constraint

Symbolic Execution [King:ACM76]

x ← α, y ← β, z ← δ, Φ = { }

void foo(int x,
 int y,int z) {
 z = x + y;
 if (z > 0){
 z++;
 }
}

z = x + y

x ← α, y ← β, z ← π, Φ = {π = α + β, π > 0 }

new constraint for
conditional

z > 0

x ← α, y ← β, z ← π, Φ = {π = α + β }

Symbolic Execution [King:ACM76]

x ← α, y ← β, z ← δ, Φ = { }

void foo(int x,
 int y,int z) {
 z = x + y;
 if (z > 0){
 z++;
 }
}

z = x + y

z > 0

x ← α, y ← β, z ← π’, Φ = { π = α + β, π > 0, π’ = π + 1 }

new symbolic value new constraint

z++

x ← α, y ← β, z ← π, Φ = {π = α + β, π > 0 }

x ← α, y ← β, z ← π, Φ = {π = α + β }

Symbolic Execution [King:ACM76]

x ← α, y ← β, z ← δ, Φ = { }

void foo(int x,
 int y,int z) {
 z = x + y;
 if (z > 0){
 z++;
 }
}

z = x + y

z > 0

x ← α, y ← β, z ← π, Φ = { π = α + β, π ≤ 0 } z++

!(z > 0)

new constraintx ← α, y ← β, z ← π’, Φ = { π = α + β, π > 0, π’ = π + 1 }

x ← α, y ← β, z ← π, Φ = {π = α + β, π > 0 }

…symbolic execution characterizes (theoretically) infinite number of real executions!

x ← α, y ← β, z ← π, Φ = {π = α + β }

Symbolic Execution [King:ACM76]

x ← α, y ← β, z ← π’, Φ = { π = α + β, π > 0, π’ = π + 1 }

x=-1, y=2, z=0

Solving constraints on input variables
yields input values (a test case) that
drives execution down the current path.

Solving Constraints

x ← α, y ← β, z ← δ, Φ = { }

void foo(int x,
 int y,int z) {
 z = x + y;
 if (z > 0){
 z++;
 }
}

z = x + y

z > 0

x ← α, y ← β, z ← π, Φ = { π = α + β, π ≤ 0 } z++

!(z > 0)
x ← α, y ← β, z ← π, Φ = {π = α + β, π > 0 }

x ← α, y ← β, z ← π, Φ = {π = α + β }

The path condition characterizes the
set of program states that flow to this
point in the path.

Issue: Handling Loops
 How do we know when to quit going around a loop?

 Could leverage loop invariants, but that is difficult to obtain for
several reasons

 Common strategy is to use different forms of bounds
 bound total number of steps, or
 bound number of loop iterations

If bound is exceeded,
then stop exploration
of path and backtrack

Reaching a method exit
gives a complete path
through the method

Representing Heap Data
[Khurshid-al:TACAS03]
How should dynamically allocated heap data be
represented in symbolic execution?

…model checker maintains a representation
of the heap …take advantage of that

Combined Concrete & Symbolic Representation

? …abstract heap location;
represents an arbitrary
heap structure

…lazily expand symbolic representation as
program interacts with the heap

nil

…use conventional symbolic
constraints on scalars in heap

βα α > β

Representing Heap Data —
Kiasan’s k-bounding
How should dynamically allocated heap data be
represented in symbolic execution?

…model checker maintains a representation
of the heap …take advantage of that

Bound search by bounding length of reference chains

…# references is 2; keep expanding

length limit k = 3

?

? …backtrack when execution
generates a chain longer than k

Note: Kiasan uses an improved algorithm -- lazier# initialization

Handling Objects using
Lazy Initialization (k = 2): LinkedList

o = head;
while (o != null) {
 if (V.contains(o))
 return;
 V.add(o);
 o = o.next;
}

?

nil

nil

2

?

1

?

0

nil

1st iteration:

Consider Kiasan
actions at this
line of code…

o

o

2nd
iteration:

o

3rd iteration:

Correctness Results and
Distinguishing Features
 Formal semantics of Kiasan’s static analysis

 proofs: relatively sound and complete
 found an unsoundness (bug) in NASA’s JPF symbolic

execution implementation

 Significantly more efficient algorithms
 orders of magnitude reduction in analysis cost

 A method to quantify the behavior coverage
analyzed by Kiasan

 Fully supports Design-by-Contract paradigm
 the most powerful compositional static analyzer for

strong heap-oriented properties
 Formalized generation of analysis feedback

 test cases, input/output object graphs

Experiment Data
Kiasan’s algorithm (Lazier#)
dramatically improves over competitors.

Experiment Data
Kiasan

Outline

 Lightweight property checking
 Input/Output Visualizations
 Strong contract checking
 Test case generation for open

systems

Tool Capabilities

 Basic concepts
 Dealing with the heap
 Correctness results and

distinguishing features

Foundations

Bogor / Kiasan

Kiasan without Contracts

What’s all this “contract” rubbish – they’re just a big waste of
time. The code is the only thing that matters anyway.

So what can Kiasan do for me?

Example
void sort(int[] data) {
 boolean isSorted;
 int numberOfTimesLooped = 0;

 do {
 isSorted = true;

 for (int i = 1; i <= data.length - numberOfTimesLooped; i++) {
 if (data[i] < data[i - 1]) {
 int tempVariable = data[i];
 data[i] = data[i - 1];
 data[i - 1] = tempVariable;

 isSorted = false;
 }
 }

 numberOfTimesLooped++;
 } while (!isSorted);
}

Example
void sort(int[] data) {
 boolean isSorted;
 int numberOfTimesLooped = 0;

 do {
 isSorted = true;

 for (int i = 1; i <= data.length - numberOfTimesLooped; i++) {
 if (data[i] < data[i - 1]) {
 int tempVariable = data[i];
 data[i] = data[i - 1];
 data[i - 1] = tempVariable;

 isSorted = false;
 }
 }

 numberOfTimesLooped++;
 } while (!isSorted);
}

Kiasan detects
possible null-
dereference

Example
void sort(int[] data) {
 boolean isSorted;
 int numberOfTimesLooped = 0;

 do {
 isSorted = true;

 for (int i = 1; i <= data.length - numberOfTimesLooped; i++) {
 if (data[i] < data[i - 1]) {
 int tempVariable = data[i];
 data[i] = data[i - 1];
 data[i - 1] = tempVariable;

 isSorted = false;
 }
 }

 numberOfTimesLooped++;
 } while (!isSorted);
}

Kiasan detects array
index out of bounds
(i.e., i can be equal to
data.length)

void foo3(Node n1, Node n2) {
 if (n1 != null && n2 != null) {
 n1.x = 2;
 n2.x = 3;
 assert (n1.x == 2 && n2.x == 3);
 }
}

Reasoning about Heap Data

This assertion is
obviously true!!!

There is no way it can
fail!

Yes, it can! Aliasing issues
often cause faults in even
very simple code.

Providing Diagnostic Information
void foo3(Node n1, Node n2) {
 if (n1 != null && n2 != null) {
 n1.x = 2;
 n2.x = 3;
 assert (n1.x == 2 && n2.x == 3);
 }
}

nil0
n1

n2

Error Case

Not only does Kiasan tell you
that there is an error, it gives
you an example execution
traces that leads to the error.

I’m sure that the tool
is wrong! There is

nothing that can
cause the violation!!!

Providing Diagnostic Information
Pre-state Graph Post-state Graph

Aliasing of
n1, n2 in the inputs

Output state showing
condition giving rise to
assertion violation

Kiasan provides pairs of states (pre,post) associated with a path leading to
the error state

auto-generated
by Kiasan

x ← α, y ← β, z ← π’, Φ = { π = α + β, π > 0, π’ = π + 1 }

x=-1, y=2, z=0

Solving constraints on input variables
yields input values (a test case) that
drives execution down the current path.

Solving Constraints

x ← α, y ← β, z ← δ, Φ = { }

void foo(int x,
 int y,int z) {
 z = x + y;
 if (z > 0){
 z++;
 }
}

z = x + y

z > 0

x ← α, y ← β, z ← π, Φ = { π = α + β, π ≤ 0 } z++

!(z > 0)
x ← α, y ← β, z ← π, Φ = {π = α + β, π > 0 }

x ← α, y ← β, z ← π, Φ = {π = α + β }

The path condition characterizes the
set of program states that flow to this
point in the path.

All Paths for Foo3 Example
void foo3(Node n1, Node n2) {
 if (n1 != null && n2 != null) {
 n1.x = 2;
 n2.x = 3;
 assert (n1.x == 2 && n2.x == 3);
 }
}

Error

1.

2.

All Paths for Foo3 Example
void foo3(Node n1, Node n2) {
 if (n1 != null && n2 != null) {
 n1.x = 2;
 n2.x = 3;
 assert (n1.x == 2 && n2.x == 3);
 }
} 3.

4.

5.

JUnit test cases
auto-generated
by Kiasan for
each case

Kiasan with Contracts

“Without specifications,
 the code is trivially correct !

I don’t use anyone’s service
unless they provide a contract”

Strong Property Checking

public class LinkedList<E> {
 //@ inv: isAcyclic();

 /*@ pre: isSorted(c) && other.isSorted(c);
 @ post: isSorted(c)
 @ && size() = \old(size()) + other.size()
 @ && (\forall E e;
 @ elements.contains(e);
 @ \old(this.contains(e))
 @ || other.contains(e))
 @*/
 void merge(@NonNull LinkedList<E> other,
 @NonNull Comparator<E> c) {
 …
 }
}

Kiasan has the technology to check strong properties in
specification languages like JML

Kiasan has the technology to check strong properties in
specification languages like JML

Strong Property Checking

public class LinkedList<E> {
 //@ inv: isAcyclic();

 /*@ pre: isSorted(c) && other.isSorted(c);
 @ post: isSorted(c)
 @ && size() = \old(size()) + other.size()
 @ && (\forall E e;
 @ elements.contains(e);
 @ \old(this.contains(e))
 @ || other.contains(e))
 @*/
 void merge(@NonNull LinkedList<E> other,
 @NonNull Comparator<E> c) {
 …
 }
}

every linked-list is acyclic this list is sorted and
the other list is sorted
based on the Comparator

this list is sorted

the size is equal
to the other size
plus this list’s old
size

all the elements
are from the
previous two list

Heavyweight & Lightweight

Geez, that’s a huge
contract! Who is

going to write all that
contract rubbish?

Actually, there are number of
reasons why you might be
willing to write specs like

that, but for now I’ll simply
point out that one can also
have useful lightweight

specifications.

Samples of Design Intentions

Specifying common patterns

 Null-ness
class LinkedList { @NonNull LinkedNode head; }

class LinkedList { @MaybeNull LinkedNode head; }

 Null-ness of a container’s element

class TreeNode {
 @NonNull @NonNullElements Set<TreeNode> children;
}

Samples of Design Intentions

Specifying common patterns

 Cyclic/Acyclic
class LinkedList { @Acyclic LinkedNode head; }

OR

@Acyclic(“head") class LinkedList { ... }

 Tree/Graph

@Tree("children") class TreeNode {
 Set<TreeNode> children;
}

Samples of Design Intentions

Specifying specific patterns

 Units
class Rod { @Meter double length;
 @Celcius double temperature; }

 One can define domain-specific
annotations that can be checked by Kiasan

Benefits of Strong Specs?

OK, I can see how
codified design

intentions could be
useful, but what about
heavyweight specs?

Why don’t we actually step
through the

methodology/workflow
for constructing and
leveraging stronger

specifications….

Executable Specifications

 Kiasan will eventually support checking of
specifications written in JML.

 Currently specifications must be written as
executable (pure) boolean-valued Java
methods.

I. Write invariants, pre/post-conditions

Executable Specifications

boolean repOK(BinaryNode t) {
 return repOK(t,new Range());
}

boolean repOK(BinaryNode t, Range range) {
 if (t == null) return true;

 if (!range.inRange(t.element)) return false;

 return repOK(t.left,range.setUpper(t.element));
 && repOK(t.right,range.setLower(t.element));
}

Invariant of a binary search tree

Dealing with Heap Data

@Assertion(@Case(
 pre = "repOK(root)",
 post = "repOK(root)"))
public void insert(int x) {root = myins(x, root); }

@Helper
private BinaryNode myins(int x, BinaryNode t) {
 if (t == null)
 t = new BinaryNode(x, null, null);
 else if(x < t.element)
 t.left = myins(x, t.left);
 else if(x> t.element)
 t.right = myins(x, t.right);
 else
 ; // Duplicate; do nothing
 return t;
}

II. Specify that invariant should be checked on input & output

Dealing with Heap Data: Results

Pre-State: this.insert(-1) Post: isOK(this.root)

Tool verifies that pre/post conditions are satisfied and gives
pre/post-state pairs for each path through the method

III. Invoke Kiasan to check method and/or generate tests

New element goes
in left child

20
 ca

ses

for
 k=

3

Dealing with Heap Data: Results

Pre-State: this.insert(0) Post: isOK(this.root)

Think about the effort if one has to do this manually!

III. Invoke Kiasan to check method and/or generate tests

New element goes
in right child

Need External Evidence and
Automated Evidence Checker

That’s great, but why should I trust your tool? Are you
telling me that my developers should check the
scenarios manually?

What is the external evidence that they are correct,
and how to check them automatically?

Automatic Test Case Generators
and Assisting Code Inspection

 Extends the generation of error scenarios
to generate test cases
 generate cases for “good” behaviors
 while test generations should not based on

code alone, this is valuable for regression
testing

 This can be used for code inspection
 the generated input/output (side-effects) of a

method give some clue about the method’s
behavior

 generalize to any statement block

Connecting With SE QA Tech

 During analysis, Kiasan computes
coverage metrics (statement, branch)
 this includes coverage on specifications
 Its analysis can even be driven by the

coverage metrics
 i.e., stop the analysis as soon as the

desirable coverage is achieved
 … reasonable cost/coverage trade-off

Kiasan Methodology
 Checking in IDE

 start with small bounds
 incrementally check
 scenario and test case generation for

violations
 More exhaustive checking

 higher bounds with overnight/parallel
checking

 Kiasan tells you if coverage criteria has
been met Code understanding

 select any block of code,
Kiasan generates flow scenarios giving path coverage

 Test case generation for regression testing
 automatically generate tests from code
 incrementally add tests as changes are made

 Specifications are leveraged for static checking, code
understanding/inspection, test case generation, and doc.

Brief Summary of Capabilities
 Static checker for common runtime errors

 run in background for low bounds
 run parallelizing checks at night with high bounds
 similar Java checking tools such as ESC/Java, with focus on

 supports heap data
 provides error trace & input/output pairs

 Test-case generation with complete path coverage up to
bounds – more powerful than commercial tools
 Run in background in Eclipse, and update test suite with

changes
 Gentle introduction to the inclusion of specifications

(from light-weight to heavy-weight)
 Support checking directly with controllable coverage
 Generate tests as evidence for either bugs found or to illustrate

coverage via a test suite
 Argue that writing specs is easier than writing a high-coverage

unit test suite – plus, specs can be leveraged in multiple ways

Kiasan Future Work
 Significant engineering effort to create easy-to-

use tool that can be dropped to developers
 specification language and methodology

 next generation (extensible) JML

 expressing properties/design intentions (e.g., regions)
 usability in configuring the analysis
 integration with various theorem provers (SMT-LIB)
 IDE integration

 Library models/abstractions
 Parallel/distributed solutions
 Integrating abstract interpretation and algebraic

specification
 Concurrency, secure information flow, etc.

For More Information…

http://bogor.projects.cis.ksu.edu

SAnToS Laboratory,
Kansas State University
http://www.cis.ksu.edu/santos

Bogor/Kiasan Project

http://indus.projects.cis.ksu.edu
Indus Project

