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on Level Specification

Implementation level specification & checking plays an important role in
developing high-assurance systems

|£Mﬂpm;we1nndwan" i

/

function FindSought 7
(A: Table; Sought: Integer) return Index; //

--# pre for some M in Index => ( A(M) = Sought );

--# return 7 => (( A(Z) = Sought) and

--# (for all M in Index range 1 .. (Z - 1) =>

-—# (A (M) /= Sought))): .

\
\

AN

Post-conditibn constraining return value to
inputs...

“SPARK Examiner with Run-time Checker...”, p. 22




on Level Specification

Implementation level specification & checking plays an important role in
developing high-assurance systems

Spark information flow
annotations...

procedure Operate;

--# global out KeyStore.RotorValue,Encrypted; ,/
--# in out KeyStore.SymmetricKey; /’

LT H AN CLeaX AR
: ——# derives :
- ——# KeyStore.SymmetricKey, KeyStore.RotorValue

E --# from :

": . ReyStore.symmetricRey I Information flows from Clear,
 —-#  Encrypted __.-""

- ——# from

B Clear, KeyStore.SymmetricKey



terests

= Implementation level specification and checking
for languages with rich object-oriented features
= focusing on properties of heap-allocated data

= specification and checking of both
= safety properties
= information flow/partitioning (not covered in this talk)

= deep integration with other quality assurance
methods such as testing

Due to the complexities of languages like Java, we don't aim to provide all the
soundness guarantees of Spark/Praxis tools, but we do provide a rigorously justified
formal foundation and soundness on a bounded portion of a program’s state space.

...let’s now look at some of the issues that we aim to address



Software Development

Building Software from Reusable Units

= Frameworks

= collection of units targeted to a particular
application domain

= Apache Struts, JavaServerFaces, CLSA
= Component Middleware

= dictates a structure notion of reuseable
component

= provides extensive infrastructure and
services

=« CCM, EIB, nesC, Bonobo

= Software Product Lines

= Drive down development time and costs
through systematic reuse of a managed
set of assets across families of similar
platforms




of Contracts

Contracts enable compositional checking

Pre-condition

M(...,...,... .
Gononpel) Pre-condition
N(.....)
Check that method
N( ..... ) conforms to its contract
No need to check body of N }
when called from M — just

check that N’s precondition Post-condition
is satisfied and assume N’s

post-condition after call

}

Post-condition



-ositional Checking

= Compositional checking is the key to
scalability

= Allows each method to be checked in
isolation

= If @ method is changed, only need to recheck
that one method (not the entire code base)

=« Enables checking to be carried out in parallel



e Contracts

Lightweight Contracts
Simple pre-condition... Post-condition requires that object bound
to 1ast not exist in the pre-state
N N . j y
/*@ reqaires x !'= null; ,//
@ ensures last.value == x && \fresh(last);
@x*/

protected void insert(Object x) {
synchronized (putLock) ({
LinkedNode p = new LinkedNode (x) ;
synchronized (last) refactoredInsert(p)
if (waitingForTake > 0) putLock.notify () ;
return;

linked list from java.util.concurrent



e Contracts

Strong Properties of Heap-allocated Data

...moving beyond ESC/Java
| Frame conditions -- only these cells can be modified. i
/*@ behavior P |
¢ assignable head, head.next.value; n’s value is
@ ensures \result == null || (\exists LinkedNode n; returned as
Q _ —=\old(\reach (head) .has (n)); | the result
Q n IS reachable from head - n.value == \result - -~ -
Q ‘ of the list in pre-state I && ! (\reach (head) .has(n)));
@/ AN
protected Object extract() {

A}
Object x = null; n is NOT reachable from head
LinkedNode first = head.next; of the list in the post-state
if (first '= null) {

x = first.value;
first.value = null;
head = first;

}

return x;

linked list from java.util.concurrent



ic’s Questions

It takes a lot of effort to write these contracts -- what's
the payoff?

= please give me more than one way to leverage a contract!
How does your approach integrate with other QA
techniques my team is already trained for?

How can your tool and methodology be incrementally
introduced into my development workflow?

Does this stuff scale?



SS

Tools like ESC/Java have made good progress toward answering the skeptic’s
questions...

= Practical contract checking technology for Java

= Supports automated checking of lightweight method
contracts

= Effective for statically eliminating many common run-
time errors such as null-pointer exceptions, array
bounds checking

But a number of limitations remain...

= Don’t handle heap-allocated data very well
= Error messages are hard to decipher

= No direct connection to other quality assurance
techniques
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Direct support for...

unbounded dynamic creation
of threads and objects

automatic memory
management (garbage
collection)

virtual methods, ...
..., exceptions, etc.
supports virtually all of Java

del Checking Framework

Threads, ) 1
Objects, Domain-Specific

Methods, .
Exceptions, etc. + Abstractions

: ...existing - .
Scheduling modules.. Do?g:r;dsap;:::lﬁc
Strategy

Domain-
State-space State Specific Domain-Specific

Exploration . Search State Rep.
P Representation ! P

Customized Checker Modules
Core Checker Modules

Extensible Framework...

= new commands and expressions can
be added to the modeling language to
create domain specific modeling
languages

= modular architecture allows core
algorithms to easily be plugged and
unplugged

= ... becoming a generic state-space
exploration framework



Educational Material...

wide collection of pedagogical
material...

= lecture slides
= streaming video lectures
= projects, exams, labs, quizzes

used by at least five
universities at both the
undergraduate & graduate
level during the past year

University Research...

Industrial Use...

a number of external research
projects

=« MPI, BPEL (ICSE 2007), UML
State Charts, .NET

over external 1300 downloads

Funded in 2006-2007 by Lockheed
Martin Software Technology Initiative

Bogor is the core of LM’s Thimble
framework for verification /
visualization of threading properties of
.NET systems

Primary testbed is LM’s Horizon
satellite mission control system
software product line



Kiasan

Kiasan — A Bogor Extension for Symbolic Execution

A

\}‘, J

“kiasan”

"symbolic”

= Combines symbolic execution with...
= model checking
= theorem proving
= constraint solving

= Formal operational semantics

= Relative soundness and completeness
proofs

= Quantifiable code behavior coverage
= Adjustable analysis cost/coverage

Static (compositional/non-
compositional) checking of
= unspecified code
= light-weight specifications
= strong statements about heap
properties
= e.g., exceeding capabilities of
ESC/Java
Provides helpful analysis feedback
= counter examples, visualization
using object graphs
Automates some of developers’
tasks
= JUnit test case generation



Kiasan Architecture

Integrated Verification Environment S S

modCount : -9

root

TreeMapSEntry:1
key : -9

e parent : null
el color : 1
& parent left right \Jarent
Wty * TreeMap$SEntry:4 TreeMap$SEntry:7
key : -10 key : -8
left : null left : null
right : null right : null
color : 0 color : 0

¥
value
v

value —»| Object:0

= JVM code | .NET MSIL |... Path Input/Output

Visualization
Concretization
POOC Constraint Solver

.class Files + Bogor

Spec Java Kiasan

Contracts Engine Modules -

CVC Lite |

Integrated Verification Environment JUnit Test Suite

+ Mock Objects
= Quantifiable code behavior coverage J

= Adjustable analysis cost/coverage




Bogor / Kiasan

Foundations Tool Capabilities
_ = Lightweight property checking
= Basic concepts = Input/Output Visualizations
= Dealing with the heap = Strong contract checking
= Correctness results and = Test case generation for open

distinguishing features systems



ecution [King:ACM76]
void foo(int x, symbolic values l constraints '

int y,int z) {

z=x +y; e P

if (z > 0){ Xe—ay—f,z2-0 P={}
z++;

}

}




ecution [King:ACM76]

void foo(int x,
int y,int z) {
Z =xXx +y; B i
if (z > 0){ IS, 2 — 0, P =1}
z++; lz =x +y
} } X—a,y—B,z—m®={r=a+f}

new symbolic value I constraint l



xecution [King:ACM76]

void foo(int x,
int y,int z) {

Z =xXx +y;
if (z > 0){
z++;

}
}

X—a,y—pB,z<90 ®={}

lz =X +y
X—a,y<—B,z—m d={m=a+p}

250

X—a,y<—B,z—ma ®={n=a+p, 7>0}

new constraint for
conditional



xecution [King:ACM76]

void foo(int x,
int y,int z) {
Z =xXx +y; B B .
if (z > 0) X—ay—Bz<—0 ®={}
z++; lz =x +vy
} } X—a,y—p,z—x P={r=a+p}

250

X—a,y<—B,z—ma ®={n=a+p, 7>0}

z++

A 4

X—a,y<—B,z«—a, ®={a=a+B, x>0, 7"=n+1}

new symbolic value | new constraint I



Execution [King:ACM76]

void foo(int x,
int y,int z) {
Z =xXx +y; - B B :
if (z > 0) X<—a,y< B,z 0, ®={}
z++; lz:x+y
}
} X—a,y<—B,z—ma @={m=a+ L}

=250
1(z > 0)

X—a,y<—B,z—ma ®={n=a+p, 7>0}

z++ Xx—ay« B, zem®={x=a+B 150}

1
1

1
A 4

X—a,Yy<— Bz, ®={n=a+B, x>0, 7 =x+1} | pnew constraint l

...Symbolic execution characterizes (theoretically) infinite number of real executions!



void foo(int x,
int y,int z) {

onstraints

N .r-l, y=2, z=0

Z =xXx +y;
if (z > 0){

X—a,y—pB,z<90 ®={}

z++;

'z =X +y

}

} o

a,y<—pB,z—mx @={r=a+pL}

%
''(z > 0)

X—a,y<—B,z—ma ®={n=a+p, 7>0}

z++

X—a,y<—B,z«—ma @={ax=a+L,x<0}

-------
.t
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2
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The path condition characterizes the
set of program states that flow to this
point in the path.

yields input values (a test case) that
drives execution down the current path.




andling Loops

= How do we know when to quit going around a loop?

= Could leverage loop invariants, but that is difficult to obtain for
several reasons

=« Common strategy is to use different forms of bounds
= bound total number of steps, or
= bound number of loop iterations

If bound is exceeded, ]
then stop exploration
of path and backtrack

~
~
~
~
~
~
~
~

Reaching a method exit
TR e gives a complete path
.m0 - s through the method




enting Heap Data
id-al: TACASO03]

How should dynamically allocated heap data be
represented in symbolic execution?

...model checker maintains a representation
of the heap ...take advantage of that

Combined Concrete & Symbolic Representation

? ...abstract heap location;
represents an arbitrary
heap structure

-
-
-
-
-
-

...use conventional symbolic
constraints on scalars in heap

o> f

>0 ——»B nil

...lazily expand symbolic representation as
program interacts with the heap



nting Heap Data —
S k-bounding

How should dynamically allocated heap data be
represented in symbolic execution?

\ X £
<7 ...model checker maintains a representation
of the heap ...take advantage of that

Note: Kiasan uses an improved algorithm -- lazier# initialization

Bound search by bounding length of reference chains
length limit k = 3

N —— ? ... # references is 2; keep expanding

— > > ? ] x’...backtrack when execution
generates a chain longer than k




bjects

o = head;
while (o '= null) {

if (V.contains (0)) 15t iteration: "

return;
V.add (o) ;

Consider Kiasan 2nd
actions at this iteration:

line of code...
o (0

using

0\‘ @

o = o.next; Cl‘ g::)
} l.:.. llllllllllll Bl

K B

3 jteration:

D

lization (k = 2): LinkedList

nil

nil




cthess Results and
guishing Features

= Formal semantics of Kiasan’s static analysis

= proofs: relatively sound and complete

= found an unsoundness (bug) in NASA’s JPF symbolic
execution implementation

= Significantly more efficient algorithms
= orders of magnitude reduction in analysis cost

= A method to quantify the behavior coverage
analyzed by Kiasan

= Fully supports Design-by-Contract paradigm

= the most powerful compositional static analyzer for
strong heap-oriented properties

= Formalized generation of analysis feedback
= test cases, input/output object graphs




Kiasan’s algorithm (Lazier#)
dramatically improves over competitors.

Total Time Theorem Prover Time
k Lazy Lazier | Lazier# Lazy | Lazier | Lazier# Lazy | Lazier | Lazier# Lazy | Lazier | Lazier#
1 3271 2420 1864 5 4 4 1.2s 1.5s 0.8s 0.4s 0.5s 0.1s
® find 2 48244 23807 18800 29 21 21 8.9s 7.2s 6.9s 2.8s 39s 2.5s
g 3 10944306 459718 351798 275 190 190 1.7h 24m 3.7m 1.1h 1.9m 3.2m
= 1 4719 3841 3053 5 4 4 2.1s 2.6s 1.5s 0.3s 1.6s 0.7s
< insert 2 56832 31905 25702 29 21 21 10.3s 7.0s 7.5s 4.5s 3.1s 4.0s
3 11036507 542929 422049 275 190 190 2.1h 2.8m 3.9m 1.4h 2.2m 3.5m
1 6097 5521 1621 13 12 4 3.5s 2.1s 1.1s 0.9s 0.5s 0.1s
8 insert 2 91691 63931 12551 112 94 21 22.7s 17.1s 5.0s 9.5s 7.9s 1.7s
’E 3 3349343 1855571 234595 2161 1668 236 50.1m 16.4m 1.5m 39.1m 12.6m I.1m
2] 1 4146 3693 1001 13 12 4 2.4s 2.5s 1.3s 1.2s 0.7s 0.5s
3 remove 2 74896 49422 9254 112 94 21 22.4s 14.5s 5.1s 12.8s 5.6s 1.9s
Q 3 3031511 1599087 197738 2161 1668 236 43.0m 13.8m 1.3m 35.1m 10.9m 1.0m
§ 1 4890 4301 1162 13 12 4 2.1s 29s 0.8s 0.3s 1.0s 0.2s
@ find 2 89819 57292 10443 126 98 21 23.1s 16.3s 4.9s 10.9s 8.4s 1.8s
3 3822839 1808683 212296 2873 1788 236 55.5m 15.7m 1.4m 42.5m 12.4m 1.1m
1 758 758 374 4 4 2 0.7s 0.7s 0.6s 0.0s 0.0s 0.0s
% push 2 1466 1390 687 6 6 3 0.9s 0.8s 0.5s 0.0s 0.1s 0.1s
2 3 2450 2260 1119 8 8 4 2.1s 1.7s 0.7s 0.4s 0.1s 0.0s
) 1 196 196 189 2 2 2 0.2s 0.2s 0.2s 0.0s 0.0s 0.1s
n pop 2 425 387 377 3 3 3 0.4s 0.3s 0.5s 0.0s 0.0s 0.1s
3 770 675 662 4 4 4 0.4s 0.6s 0.5s 0.0s 0.2s 0.0s
1 4309 2009 1199 8 6 4 4.2s 2.1s 1.6s 3.0s 1.2s 1.0s
a get 2 85601 27489 17440 62 40 28 16.0s 10.3s 7.7s 8.5s 4.3s 4.4s
g 3 20707094 774545 470913 782 482 331 7.0h 3.lm 2.0m 5.0h 2.3m 1.4m
3 1 2247 1721 1110 7 5 4 1.4s 1.4s 1.4s 0.1s 0.4s 0.9s
= remove 2 74892 37832 17081 73 43 28 16.0s 12.2s 5.8s 7.9s 6.2s 2.3s
£ 3 17631620 1166311 472985 1075 579 331 5.1h 7.6m 1.9m 3.7h 6.4m 1.4m
g 1 1219 664 657 2 2 2 0.7s 0.4s 0.6s 0.1s 0.0s 0.3s
5, lastKey 2 15680 7658 7614 6 6 6 7.7s 2.5s 3.6s 3.5s 0.5s 1.2s
3 3524450 205430 204738 31 31 31 27.0m 27.9s 30.3s 21.5m 17.3s 19.3s
1 986 818 354 6 6 3 2.0s 1.4s 0.7s 1.0s 0.8s 0.5s
add 2 2932 1514 472 20 14 5 6.5s 2.8s 1.2s 4.2s 1.4s 0.7s
S 3 10990 2906 590 74 30 7 21.0s 5.6s 0.9s 15.8s 3.3s 0.4s
§ | 644 588 438 7 6 6 0.9s 1.6s 0.9s 0.2s 0.3s 0.4s
= indexOf 2 1195 1135 486 17 16 7 2.1s 2.0s 1.1s 0.5s 1.0s 0.7s
g 3 2686 2339 486 44 38 7 4.5s 4.1s 0.5s 2.5s 1.7s 0.1s
- 1 202 200 197 3 3 3 0.8s 0.3s 0.3s 0.6s 0.1s 0.1s
- removeElementAt | 2 382 320 257 6 5 4 1.0s 0.7s 0.6s 0.2s 0.1s 0.4s
3 999 566 318 16 9 5 2.0s 0.9s 0.6s 0.7s 0.5s 0.2s

Table 1. Experiment Data (excerpts); s — seconds; m — minutes; h - hours




Table 1. Experiment Data (excerpts); s — seconds; m — minutes; h - hours

K Lazy
1 3271 2420 1864 .
° find 2 48244 23807 18800 29 21 8.9s 7.2s .
@ 3 || 10944306 | 459718 | 351798 275 190
’;; 1 4719 3841 3053 5 3 3.5s 1.1s
insert 2 56832 31905 | 25702 29 21
3 || 11036507 | 542929 | 422049 275 190 22.7s 5.0s
1 6097 5521 1621 13 12
8 insert 2 91691 63931 | 12551 112 94 50.1m 1.5m
- 3 3349343 | 1855571 | 234595 || 2161 1668
o I 4146 3693 1001 13 12 2.4s 1.3s
(v}
> remove 2 74896 49422 9254 112 94
Q 3 3031511 | 1599087 | 197738 || 2161 1668 22.4s 5.1s
& 1 4890 4301 1162 3 12
L=
@ find 2 89819 57292 10443 126 98 43.0m 1.3m
3 3822839 | 1808683 | 212296 || 2873 1788
1 758 758 374 4 4 2. IS 088
% push 2 1466 1390 687 6 6
3 3 2450 2260 1119 8 8 23.18 4.9S
S 1 196 196 189 2 p)
o pop 2 425 387 377 3 3 55.5m 1.4m
3 770 675 662 4 4 — S
1 4309 2009 1199 g 6
o get 2 85601 27489 | 17440 62 40 4.2s 1.6s
Z 3 || 20707094 | 774545 | 470913 782 482
o i 2247 1721 1110 7 5 16.0s 1.7s
= remove 2 74892 37832 17081 73 43
= 3 || 17631620 | 1166311 | 472985 || 1075 579 7.0h 2.0m
g 1 1219 664 657 2 2 2
8. lastKey 2 15680 7658 7614 6 6 6 1.4s 1.4s
3 3524450 | 205430 | 204738 31 31 1
1 986 818 354 6 6 3 16.0s 5.8s
add 2 2932 1514 472 20 14 5
% 3 10990 2906 590 74 30 7 5 .1h 1 .91’11
i 644 588 438 7 6 6
= indexOf 2 1195 1135 486 17 16 7 0.7s 0.6s
5 3 2686 2339 486 44 38 7
s I 202 200 197 3 3 3 1.7s 3.6s
- removeElementAt 2 382 320 257 6 5 4
3 999 566 318 16 9 5 27 .0m 3(0.3s




Bogor / Kiasan

Foundations Tool Capabilities
_ = Lightweight property checking
= Basic concepts = Input/Output Visualizations
= Dealing with the heap = Strong contract checking
= Correctness results and = Test case generation for open

distinguishing features systems



-ithout Contracts

What's all this “contract” rubbish — they’re just a big waste of
time. The code is the only thing that matters anyway.

So what can Kiasan do for me?



void sort(int[] data) {
boolean isSorted;
int numberOfTimesLooped = 0;

do {
isSorted = true;

for (int i = 1; 1 <= data.length - numberOfTimesLooped; i++) {
if (data[i] < datal[i - 1]) {
int tempVariable = datali];
data[i] = datal[i - 1];
data[i - 1] = tempVariable;

isSorted = false;

}

numberOfTimesLooped++;
} while (!'isSorted);




void sort(int[] data) {
boolean isSorted;

int numberOfTimesLooped = 0;
do {
isSorted = true;

for (int 1 = 1; i <= data.length - numberOfTimesLooped; i++) {

if (datal[i] < datafli - 17) °f

-~
~
~
~
~<
~

int tempVariable = datal[il]; :

ottty - et o 05, K|as§n detects
data[i - 1] = tempVariable; pOSSIble nLIII'
isSorted = false; dereference

}

numberOfTimesLooped++;
} while (!'isSorted);




void sort(int[] data) {
boolean isSorted;

int numberOfTimesLooped = 0;
do {
isSorted = true;

for (int i = 1; 1 <= data.length - numberOfTimesLooped; i++) {
if (data[i] < datal[i - 1]) {

int tempVariable = datal[il]; Kiasan detects array
data[i] = datali - 1];

datal[i - 1] = tempVariable; indeX out Of bounds
(i.e., i can be equal to
data.length)

isSorted = false;

}

}

numberOfTimesLooped++;
} while (!'isSorted);




Ing about Heap Data

void foo3 (Node nl, Node n2) {
if (nl1 !'= null && n2 !'= null) ({
nl.x = 2;
n2.x = 3;
assert (nl.x == 2 && n2.x == 3);
}
) e
This assertion is
obviously true!!!

There is no way it can

Yes, it can! Aliasing issues
often cause faults in even
very simple code.



iIng Diagnostic Information

void foo3 (Node nl, Node n2) {
if (nl !'= null &s& n2 !'= null) { Error Case
nl.x = 2; 1
n2.x = 3; LD -
assert (nl.x == 2 && n2.x == 3); nz//’
}
} —_mdRdE

I'm sure that the tool
is wrong' There is
nothing that can
cause the violation!!!

Not only does Kiasan tell you
that there is an error, it gives
you an example execution

traces that leads to the error.




g Diagnostic Information

auto-generated

Pre-state Graph Post-state Graph b} Kiasan

gase Pre-state Graph Post-state Graph /

this nl n2
nl n2 l \ /

l \ / PTest:7 S:Node:30:2
0 ,,

P:Test:7 S:Node:30:2 /l }

this

SVg
3

Aliasing of Output state showing
nl, n2 in the inputs condition giving rise to
! assertion violation

Kiasan provides pairs of states (pre,post) associated with a path leading to
the error state




void foo(int x,
int y,int z) {

onstraints

N .r-l, y=2, z=0

Z =xXx +y;
if (z > 0){

X—a,y—pB,z<90 ®={}

z++;

'z =X +y

}

} o

a,y<—pB,z—mx @={r=a+pL}

%
''(z > 0)

X—a,y<—B,z—ma ®={n=a+p, 7>0}

z++

X—a,y<—B,z«—ma @={ax=a+L,x<0}

-------
.t
PRy

------------------------------
LS
"
"a
*a
2

X<—a,y« B,z CD=-'.‘{‘.7'L’=CY+§,.TL’>0, n’=n+1}u:=

--------- FXLEELD
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v
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.......
-----------

The path condition characterizes the
set of program states that flow to this
point in the path.

yields input values (a test case) that
drives execution down the current path.




for Foo3 Example

void foo3 (Node nl, Node n2) {
if (nl1 !'= null && n2 !'= null) {

nl.x = 2;
n2.x = 3;
assert (nl.x == 2 && n2.x == 3);

this nl n2

1. this

Y2 Y

Node:0
Test:0 Node:0 Test:0
data=3

-5V .

2 . this nl n2 this nl n2

R A S N Y S T

Node:0 Node:1
data=2 data =3

Test:0 Node:0 Node:1 Test:0

.Svg v




for Foo3 Example

void foo3 (Node nl, Node n2) { .

) | | JUnit test cases
nl.x = 2; by Kiasan for
n2.x = 3; each case
assert (nl.x == 2 && n2.x == 3); /

} -

} 3 this nl n2 this nl n2 /
l l l l l l OK ||Foo3Test2.java
Test:1 null Node:2 Test:1 null Node:2
l:sv2 .SVg
4. this nl n2 this nl n2
l l l l l l OK  |Foo3Test3.java
Test:2 Node:3 null Test:2 Node:3 null
l:sv2 .SVg
5 . this nl n2 this nl n2
l \ / l \ / OK  |Foo3Testd.java
Test:3 null Test:3 null
SVg -SVg




ith Contracts

" Without specifications,
the code is trivially correct!

I don't use anyone’s service
unless they provide a contract”



operty Checking

Kiasan has the technology to check strong properties in
specification languages like JML

public class LinkedList<E> {
//Q inv: isAcyclic();

/*@ pre: isSorted(c) && other.isSorted(c) ;
@ post: isSorted(c)

@ && size() = \old(size()) + other.size()
@ && (\forall E e;

@ elements.contains (e) ;

@ \old(this.contains (e))

@ | | other.contains (e))

@*/

void merge (@NonNull LinkedList<E> other,
@NonNull Comparator<kE> c) {




roperty Checking

Kiasan has the technology to check strong properties in
specification languages like JML

every linked-list is acyclic I this list is sorted and

_ , . the other list is sorted
B s - based on the Comparator

: 1isSorted(c) && other isSorted(c) ;
this list is sorted tr—~isSorted (c)

¢ ,&& size() = \old(size()) + other.size()
Q / && (\forall E e;

@ J/ elements.contains(e);\

@ ‘ \old(this.contains (e)) ™

| | other.contains(e)) . all the elements

onNull LinkedList<E> othez: are f_rom the ]
onNull Comparator<kE> c) { PFrevious two list

the size is equal

to the other size
plus this list’s old
size




ight & Lightweight

Actually, there are number of
reasons why you might be
willing to write specs like
that, but for now I'll simply
point out that one can also
have useful lightweight
specifications.

Veasns

Geez, that's a huge
contractt Who is

going to write all that
contract rubbish?




of Design Intentions

Specifying common patterns

= Null-ness

class LinkedList { (@NonNull LinkedNode head; }

class LinkedList { (@MaybeNull LinkedNode head; }

= Null-ness of a container’s element

class TreeNode {
@NonNull @NonNullElements Set<TreeNode> children;

}



of Design Intentions

Specifying common patterns

= Cyclic/Acyclic
class LinkedList { (@Acyclic LinkedNode head; }
OR

@Acyclic(“head") class LinkedList { ... }

= [ree/Graph

@Tree ("children") class TreeNode {
Set<TreeNode> children;
}



-s of Design Intentions

Specifying specific patterns

= Units

class Rod { (@Meter double length;
@Celcius double temperature; }

= One can define domain-specific
annotations that can be checked by Kiasan



of Strong Specs?

Why don't we actually step
through the
methodology/workflow
for constructing and
leveraging stronger
specifications....

''''''

A

OK, I can see how
codified design
intentions could be
useful, but what about

heavyweight specs?



-table Specifications

I. Write invariants, pre/post-conditions

= Kiasan will eventually support checking of
specifications written in JML.

= Currently specifications must be written as
executable (pure) boolean-valued Java
methods.



ble Specifications

Invariant of a binary search tree

boolean repOK (BinaryNode t) {
return repOK (t,new Range());

}

boolean repOK (BinaryNode t, Range range) {
if (t == null) return true;

if (!range.inRange(t.element)) return false;

return repOK(t.left,range.setUpper(t.element))
&& repOK(t.right, range.setLower (t.element));




with Heap Data

I1. Specify that invariant should be checked on input & output

@Assertion (@Case (

pre = "repOK (root)",
post = "repOK (root)"))
public void insert( int x ) {root = myins( x, root ); }
@Helper
private BinaryNode myins ( int x, BinaryNode t ) {
if ( t == null )
t = new BinaryNode( x, null, null );

else if( x < t.element)

t.left = myins( x, t.left );
else if( x> t.element )

t.right = myins( x, t.right );
else

; // Duplicate; do nothing
return t;




ith Heap Data: Results

III. Invoke Kiasan to check method and/or generate tests
Pre-State: this.insert(-1) Post: 1sOK(this.root)

this

o | l |
’LQ 6’66///5 this X BinarySearchTree:1 -1
&
KO‘ l l root
BinarySearchTree:1 -1 4
BinaryNode:1 NeW element gOeS
! i clement =0 _--| in left child
right = null JPie -

BinaryNode:1

element =0 left _-~ -

left = null y
BinaryNode:2

element = -1

right = null

left = null

right = null

.svg

Tool verifies that pre/post conditions are satisfied and gives
pre/post-state pairs for each path through the method




ith Heap Data: Results

III. Invoke Kiasan to check method and/or generate tests
Pre-State: this.insert(0) Post: 1sOK(this.root)

this X
this X
l l BinarySearchTree:1 0
root
BinarySearchTree:1 0 \ 4
BinaryNoder New element goes
2 root element = -1 1IN rlg ht Chlld
y left = null P
BinaryNode:1 el
element = -1 right -~
left = null Y
BinaryNode:3
right = null mayToce
element =0
.SVg
left = null
right = null
.svg

Think about the effort if one has to do this manually! |



rnal Evidence and
d Evidence Checker

N\

That's great, but why should I trust your tool? Are you
telling me that my developers should check the
scenarios manually?

What is the external evidence that they are correct,
and how to check them automatically?




atic Test Case Generators
ssisting Code Inspection
= Extends the generation of error scenarios
to generate test cases

= generate cases for “good” behaviors

= While test generations should not based on
code alone, this is valuable for regression
testing

= This can be used for code inspection

= the generated input/output (side-effects) of a
method give some clue about the method’s
behavior

= generalize to any statement block




-cting With SE QA Tech

= During analysis, Kiasan computes
coverage metrics (statement, branch)
=« this includes coverage on specifications

=« Its analysis can even be driven by the
coverage metrics

= i.e., stop the analysis as soon as the
desirable coverage is achieved

= ... reasonable cost/coverage trade-off



Methodology

= Checking in IDE

= start with small bounds
= incrementally check

= scenario and test case generation for
violations

= More exhaustive checking

= higher bounds with overnight/parallel
checking

_ = Kiasan tells you if coverage criteria has
= Code understanding been met

= select any block of code,
Kiasan generates flow scenarios giving path coverage

= Test case generation for regression testing
= automatically generate tests from code
= incrementally add tests as changes are made

= Specifications are leveraged for static checking, code
understanding/inspection, test case generation, and doc.




= Static checker for common runtime errors
= run in background for low bounds
= run parallelizing checks at night with high bounds
= similar Java checking tools such as ESC/Java, with focus on
= supports heap data
= provides error trace & input/output pairs
= [est-case generation with complete path coverage up to
bounds — more powerful than commercial tools
= Run in background in Eclipse, and update test suite with
changes
= Gentle introduction to the inclusion of specifications
(from light-weight to heavy-weight)
= Support checking directly with controllable coverage

= Generate tests as evidence for either bugs found or to illustrate
coverage via a test suite

= Argue that writing specs is easier than writing a high-coverage
unit test suite — plus, specs can be leveraged in multiple ways




-n Future Work

= Significant engineering effort to create easy-to-
use tool that can be dropped to developers

= specification language and methodology
= next generation (extensible) JML

= expressing properties/design intentions (e.g., regions)
= usability in configuring the analysis

= integration with various theorem provers (SMT-LIB)

« IDE integration

= Library models/abstractions
= Parallel/distributed solutions

= Integrating abstract interpretation and algebraic
specification

= Concurrency, secure information flow, etc.




Information...

SAnToS Laboratory,

Kansas State University
http://www.cis.ksu.edu/santos

SAnToS

Laboratory

Bogor/Kiasan Project
http://bogor.projects.cis.ksu.edu

Indus Project
http://indus.projects.cis.ksu.edu




