
Let me rephrase that: Transparent optimization in SDNs
Santhosh Prabhu∗ Mo Dong∗ Tong Meng P. Brighten Godfrey Matthew Caesar

University of Illinois, Urbana-Champaign
{prabhum2, modong2, tongm2, pbg, caesar}@illinois.edu

ABSTRACT
Enterprise networks today have highly diverse correctness
requirements and relatively common performance objec-
tives. As a result, preferred abstractions for enterprise net-
works are those which allow matching correctness specifi-
cation, while transparently managing performance. Existing
SDN network management architectures, however, bundle
correctness and performance as a single abstraction. We ar-
gue that this creates an SDN ecosystem that is unnecessarily
hard to build, maintain and evolve. We advocate a separa-
tion of the diverse correctness abstractions from generic per-
formance optimization, to enable easier evolution of SDN
controllers and platforms. We propose Oreo, a first step to-
wards a common and relatively transparent performance op-
timization layer for SDN. Oreo performs the optimization by
first building a model that describes every flow in the net-
work, and then performing network-wide, multi-objective
optimization based on this model without disrupting higher
level correctness.
CCS Concepts
•Networks→ Network architectures;
Keywords
Software-Defined Networking, Optimization

1. INTRODUCTION
Simplification of network management is not an easy goal

to achieve, especially with diverse requirements that admin-
istrators have of their networks. Typically, these require-
ments fall in two categories: correctness and performance.
Correctness (more accurately functional correctness) defines
reachability, access control and chaining between different
types of endpoints and services. Performance, used in a
broader sense here, includes optimization, resilience and
monitoring.

Though correctness may appear to simply boil down to
“what can talk to what through what”, the higher level pol-
∗Author order determined by a coin toss

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SOSR ’17, April 03-04, 2017, Santa Clara, CA, USA
c© 2017 ACM. ISBN 978-1-4503-4947-5/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3050220.3050226

icy abstractions that network administrators require to define
correctness are extremely diverse. The definition of correct-
ness, and the abstraction used to state it depends on many
factors, such as the nature of the enterprise, traffic the net-
work carries, applications that use the network, various com-
pliance requirements, whether the network is a private data
center or a campus or a WAN, etc. Furthermore, the active
SDN research community is now experimenting with novel
abstractions. Performance on the other hand is better under-
stood, and there exist well-defined best practices to meet the
typical performance goals that apply to many enterprises. In
fact, nearly all enterprises outside the advanced technology
sphere rely on a smaller set of generic off-the-shelf features
for performance (shortest path routing, ECMP, and MPLS-
TE being examples).

We believe that SDN can and should be an enabler for cre-
ating diverse higher level correctness abstractions that match
the requirements of enterprise networks. In fact, there do
exist OpenFlow-based SDN platforms that define a variety
of specification abstractions. However, they all bundle cor-
rectness and performance together as a single problem, and
define a common abstraction to manage both. For example,
FatTire [15] provides an abstraction that combines a regex-
based path specification with a fault tolerance requirement.
SIMPLE [14] combines service chaining with switch mem-
ory optimization. The SOL [7] API aims at simultaneously
managing both correctness and performance.

This monolithic architecture has some major drawbacks.
Given the sheer diversity of correctness goals, having uni-
fied platforms for correctness and performance will require
an ecosystem of monolithic platforms, each managing both
correctness and performance. Such an ecosystem would take
a formidable amount of effort to create – in addition to the
diversity of correctness goals, network optimization is a non-
trivial challenge that in itself requires significant effort to
tackle. Moreover, evolving and maintaining control plat-
forms over time is more difficult if they are monolithic. For
enterprise users, combining the artifacts of correctness and
performance significantly hinders agility, since adoption of
new techniques may require a complete overhaul of existing
network management mechanisms.

To overcome the limitations of such coupling, in this pa-
per, we argue that correctness and performance should be
treated as modules that can evolve separately. We envision
a rich set of correctness abstraction platforms that focus on
policy constructs attuned to enterprise needs, each produc-
ing a correct data plane in OpenFlow (or a future standard-
ized format). A separate performance module then takes this

correct data plane and generates an optimized data plane.
Moreover, leveraging the relatively generic and well under-
stood performance needs across many network scenarios, a
commonly-applicable performance module can be built re-
quiring minimal configuration.

In this paper, we present Oreo as first step towards a com-
mon performance optimization platform to enable decoupled
correctness and performance management. The concept of
Oreo is similar to program optimization features provided
by compilers. Just as optimizations like loop unrolling and
code inlining can be done without the knowledge of the pro-
grammer, in SDNs, path shortening, rule compression, etc.
require no operator interaction. And just as compilers can
perform these optimizations on programs of every conceiv-
able nature, the SDN optimization layer can be largely ag-
nostic to higher level correctness constructs.

To that end, Oreo takes a correct data plane computed
by any upper layer as input and then constructs a network-
wide data plane flow model describing the forwarding be-
havior of the entire network. This flow model also gives
Oreo the capability to perform network-wide multi-objective
performance optimization unlike many single-device opti-
mization systems previously proposed [4, 12]. We present a
proof of concept of our system which focuses on transparent
network-wide static optimization with multiple objectives –
minimizing number of forwarding rules and average path
length. We conclude with a future research roadmap for a
dedicated performance enhancement layer.

2. A CASE FOR DECOUPLING COR-
RECTNESS AND PERFORMANCE

As discussed in §1, correctness in enterprise networks
constitutes a diversified and complex space. In modern
software-defined data centers, administrators set the secu-
rity policy of application-based end-point groups in the face
of constant change such as VM migration and dynamic ap-
plication provisioning. In more organic networks like cam-
pus networks, correctness requirements do not have broad
standardization. A financial institution might need to iso-
late PCI-compliant payment processing networks from op-
erational networks; a retail store might need to segment
customer Internet access and the credit card payment net-
work. Many organizations from universities to manufac-
turing plants have DMZs that protect secure sites and at
the same time bridge outside control commands. In tradi-
tional network settings, the network architect’s biggest chal-
lenge is to accurately translate the higher level correctness
intent (such as all the examples above) to lower level imple-
mentation involving numerous technologies such as phys-
ical attachment points, VLAN assignment, IP subnetting,
VRFs, route filtering and black-holing, firewall configura-
tions, middlebox placement, etc. This process is challenging
and involves hiring armies of network operators.

On the other hand performance configuration is relatively
more generic. Certain particular industries require special
advanced technology (like ISPs doing advanced traffic engi-
neering or algorithmic trading firms optimizing microsec-
onds of latency), but most enterprises are satisfied with

over-provisioning or using common features like shortest
path routing, use of multiple equal-cost paths (via ECMP at
layer 3 or port-channels at layer 2), and occasionally certain
MPLS features (fast reroute).

SDN presents an opportunity to create platforms that net-
work operators can use to define diverse high level correct-
ness requirements without worrying about that translation
process. This is exemplified by the recent commercial suc-
cesses of network virtualization products like Cisco ACI[3]
and VMware NSX[17], which are designed to provide con-
venient abstractions for administrators to manage policies in
data centers. This also shows it is common for enterprise
networks to focus on managing correctness, with much less
fine-grained management of performance.

In the SDN research community, the SDN management
platforms that do offer higher level correctness abstractions
have invariably coupled them with performance manage-
ment. For example, FatTire [15] provides an abstraction that
combines a regex-based path specification with a fault tol-
erance requirement. Merlin [16] combines service chaining
with switch memory optimization. These may be difficult
for network operators to use, since they must jointly specify
both correctness and performance goals. SOL [7] provides a
library API that controller authors can use to implement a va-
riety of correctness abstractions and performance optimiza-
tions. This may accelerate the process of implementing con-
trollers since it effectively allows some optimizations to be
shared across different controllers. But most fundamentally,
all of the above controllers are built as a monolithic unit try-
ing to accomplish both performance and correctness. For
that approach to be successful, the SDN research community
either has to (1) build a large collection of SDN platforms,
with support for various combinations of correctness and
performance abstractions, or (2) design a universally accept-
able abstraction for all enterprises. Given the diversity of re-
quirements, both these approaches are fundamentally hard.
Even with libraries like SOL available for platform creators
to implement their correctness abstractions, the challenges
involved in creating, maintaining and evolving a multitude
of optimization platforms makes the first approach onerous.
The second approach is similarly hard, because a single ab-
straction will have difficulty matching the multitude of cor-
rectness specifications that exist in the enterprise space.

We believe the right solution to the problem lies in de-
coupling correctness from performance. The correctness
layer can focus on allowing the network manager to specify
high level intent; performance can be optimized in a lower
layer, as transparently as possible and requiring only simple
configuration from network managers, as in traditional net-
works. A common communication format (like OpenFlow)
can be used for easy interaction between various correctness
platforms and the single performance management layer.

This layered architecture has several benefits. Most im-
portantly, it will lead to a more flexible SDN ecosystem and
accelerate innovation. A diversity of different correctness-
oriented controllers can cater to diversified requirements as
described earlier. The performance layer can then incorpo-
rate optimizations which may be basic or may be advanced

– optimizations of flow routing, resilience, table size, etc. –
but are generally relatively generic, so they can benefit many
higher-layer controllers. (Indeed, truly transparent optimiza-
tions can even benefit controllers that have already been de-
veloped!) In addition, we believe there are significant net-
work management benefits: a single performance layer
could support multiple controllers in a single deployment,
simplifying operations; separating correctness and control
with an open API between them provides a powerful mon-
itoring point to improve visibility and isolate problems to
one layer or the other; and separate software could align
better with separate teams in some enterprises (e.g. secu-
rity team managing the correctness controller, network team
managing the performance controller). Separating the two
controllers also allows enterprises to modify/upgrade one in-
dependent of the other, promoting greater agility within the
enterprise. Note that these advantages do not apply to mono-
lithic platforms, including those built using SOL.

To push towards this architecture, we focus on the com-
mon performance layer, called Oreo. Oreo takes a correct
data plane computed by any upper layer as input and then
constructs a network-wide data plane flow model describ-
ing the forwarding behavior of the entire network. This
flow model is the foundation for Oreo’s network-wide per-
formance enhancement. First, from this model, Oreo can au-
tomatically infer the constraints for optimization – the end-
to-end reachability/isolation of packets and service chain-
ing. This is the key to keeping Oreo transparent. Sec-
ond, this flow model gives Oreo the capability to perform
network-wide multi-objective performance optimization that
differs from previous single-device optimization systems
(e.g. single-device rule compression [4, 12]). The scope
of Oreo is to enhance the following aspects of data plane:
(a) Static optimization, e.g. network-wide rule compression,
forwarding path length reduction, and dropping blacklisted
traffic early; (b) Resilience, e.g. single-link failure resilience
with automatic backup rule computation; (c) Dynamic traf-
fic optimization, e.g. traffic engineering using active traffic
measurement and Oreo’s flow model.

3. SYSTEM ARCHITECTURE
Fig. 1 illustrates Oreo’s proposed architecture. Oreo ex-

pects a layer above it to specify a correct data plane, and
builds a network-wide flow model describing end-to-end
paths along which traffic is forwarded. It then uses a multi-
objective optimization mechanism to determine the best
paths and finally pushes data plane rules into the switches.
We now describe each component of Oreo in greater detail.

Network Modeler directly receives OpenFlow data plane
rules and network topology output from the SDN controllers
to create and update a network-wide flow model. Essentially,
the network model is a correctness declaration from the up-
per layer and defines the paths and final fates of any packet
injected at any interface in the network. This model is de-
fined based on equivalence classes, which are collections of
packets whose behavior is exactly identical throughout the
network. A combination of an ingress device interface and
an EC defines a forwarding path and that is the atomic unit

Figure 1: Oreo Architecture

for Oreo to perform optimization. The capability of building
this network model from OpenFlow data plane rules makes
Oreo transparent to the correctness layer.

Path Calculator’s task is to compute candidate paths that
are going to act as feasible values of decision variables dur-
ing optimization, for all (EC, ingress interface) pairs. Based
on the network model, Path Calculator automatically figures
out the constraint on the alternative paths: packets forwarded
on them should have the same end fate as on the original
paths defined by the correctness layer. Service chaining is
also maintained by treating middleboxes as both path termi-
nation and initiation points, meaning that traffic is assumed
to leave the network and re-enter. The choice of algorithm
for calculating the candidate paths depends on the type of
performance optimization involved: stretch reduction nat-
urally favors shorter paths and fault tolerance on the other
hand favors disjointedness of paths. We expect that good
heuristics can help in having a good combination of paths
being selected as candidates. For this proof of concept, we
use Yen’s algorithm for k-shortest paths [18].

Path Optimizer module performs network-wide, multi-
objective performance optimization by using the network
flow model and picking the best alternative paths from
among those provided by Path Calculator. We use several
examples from different categories to illustrate the scope of
Oreo’s performance optimization.

First, static optimization focuses on reducing forwarding
paths and network resources like switch memory. We dis-
cuss two examples here. The first example is Network-wide
rule compression. The scope of Oreo’s switch rule compres-
sion is much wider than existing rule compression platforms.
Thanks to the network-wide flow model, Oreo understands
how any traffic flows through the network and therefore un-
derstands what rules can actually be hit by traffic. So, post-
optimization, only rules which can be hit will be pushed into
the dataplane. In addition, Oreo can also change end-to-end
EC paths, such that more paths share same rules, to save
switch memory even further. The second example is path
optimization. Naturally, Oreo’s understanding of network-
wide flows allows it to choose shorter paths with equivalent
behavior. An interesting special case for path optimization

is that Oreo can drop unwanted traffic as early as possible to
reduce wasted traffic in the network.

Second, resilience proactively and reactively addresses
failures. Oreo can proactively compute backup rules and
pre-install them to OpenFlow group tables. Oreo can also
react dynamically to link failures and install alternative rules
(pre-computed or computed reactively) to maintain the orig-
inal behavior of the flows.

Third, dynamic traffic optimization combines the knowl-
edge of the flow model and active traffic measurement to
alleviate hotspots in the network when possible. While the
traffic engineering optimization can be using new or existing
mechanisms, we believe that leveraging the network wide
model for TE can pay rich dividends particularly in less
structured topologies (outside the datacenter).

Due to the multi-objective nature of the optimization
problem, Oreo would need to ultimately expose simple
knobs similar to today’s compiler optimization options to
end users to express weight on different optimization goals.
As a proof of concept for the network-wide multi-objective
performance optimization, in this paper, we only focus on
formulation and evaluation of the two static optimization
goals listed above.

Rule Generator takes the EC paths output by Path Op-
timizer and translates these paths into actual rules to be in-
serted into the data plane. This process is needed because
during the optimization process, we may not be able to al-
ways compute the actual rules, but rather use heuristics, like
in [7], to represent different optimization objectives. Ide-
ally, the performance optimization step should combine rule
computation and path selection into a single optimization
problem. Prior work on optimized rule placement can be
leveraged [8] in computing the optimal set of rules that ac-
curately enforce the computed state. The rule computation
will work on a similar flow table layout used in commer-
cial forwarding devices, where each table is responsible for
a particular function, including VLANs, L2 forwarding, L3
unicast, L3 multicast etc.

Data Plane Interaction Module installs the computed
rules into the switches and is also responsible for monitoring
network events and traffic when needed.

4. PROOF OF CONCEPT
To evaluate the feasibility and usefulness of Oreo, we cre-

ate a proof-of-concept path optimizer module that focuses
on two static optimization goals: minimizing path length of
packet forwarding and minimizing the switch memory us-
age. We use network model generated using the VeriFlow
dataplane verifier [11] and path candidates picked using a
k-shortest path algorithm as input for this Path Optimizer
module. We chose Integer Linear Programming as our op-
timization technique, primarily due to its proven success in
network dataplane optimization [7, 14, 16]. Next, we de-
scribe the formulation of the ILP.

We represent the set of all the network devices as:
{Di | i = 1, 2, · · · ,M}.

Device Di is assumed to contain Ni flow tables. For ease

of exposition, we uniformly number all the N =
∑

Ni for-
warding tables by defining the set of all flow tables as:

{TBj | j = 1, 2, · · · , N}.

The capacity of TBj , in number of rules, is cj . Then, the set
of equivalence classes to be optimized is denoted by:

{ECk | k = 1, 2, · · · ,K}.

Each ECk contains Rk ingress-egress pairs, which deter-
mine a set of flows through the network. Assume that for the
ingress-egress pair r in ECk, there exist Sk

r paths available
by the Path Selector. We name these paths P k

ri (0 ≤ i < Sk
r),

where P k
r0 always denotes the path defined for ECk by the

controller. The length of path P k
rs is denoted by hk

rs. We also
define, for each path P k

rs, a set of binary forwarding flags,
xk
rs(i, j), denoting the existence of packet forwarding from

TBi to TBj when traffic flows along P k
rs.

To solve the optimization problem, the Path Enhancer
module needs to assign values to decision variables vkrs, in-
dicating whether P k

rs is selected or not. The objective func-
tion to be maximized is computed as the sum of the reduc-
tion in path length and the amount of switch memory saved.
The terms are weighted by coefficients a and b, respectively.
The reduction in path length is computed as the difference
between the original path that is defined by the controller
and the new path that is chosen, summed over all equiva-
lence classes. Similarly, switch memory reduction at each
table is calculated as the reduction in the number of ECs
traversing it. This is a heuristic that has been shown to work
well [7], but we do not rule out choosing other heuristics if
needed. Naturally, changing the coefficients a and b causes
the computed data plane to vary. A higher a favors selection
of shorter paths, whereas a higher b causes paths to be shared
by multiple ingress-egress pairs.

Mathematically, the objective function is as follows:
Maximize:

a ·
K∑

k=1

Rk∑
r=1

Sk
r∑

s=1

vkrs
(
hk
r0 − hk

rs

)
+ b ·

K∑
k=1

N∑
i=1

N∑
j=1[

sgn

(
Rk∑
r=1

xk
r0(i, j)

)
− zkij

]
The following constraints need to be satisfied:
• Forwarding table TBi has at most ci forwarding rules.
• Each ingress/egress device pair uses only one path.
• Each ECk either doesn’t reach forwarding table TBi, or

matches exactly one rule (i.e., a unique next hop) in TBi.
These constraints can be written precisely as:

K∑
k=1

N∑
j=1

zkij ≤ ci, i = 1, · · · , N

Sk
r∑

s=0

vkrs = 1, k = 1, · · · ,K r = 1, · · · , Rk

N∑
j=1

zkij ≤ 1, k = 1, · · · ,K i = 1, · · · , N

vkrs ∈ {0, 1}, k = 1, · · · ,K r = 1, · · · , Rk

s = 0, 1, · · · , Sk
r

1

Rk
·

 Rk∑
r=1

Sk
r∑

s=0

vkrs · xk
rs(i, j)

 ≤ zkij .

i, j = 1, · · · , N k = 1, · · · ,K
5. EVALUATION

We implemented a proof-of-concept Path Optimizer mod-
ule using Gurobi [6] to minimize switch memory cost and
path stretch. In our experiments, we evaluate the path op-
timizer’s feasibility in terms of optimization performance
and result quality. We also examine the effect of the multi-
objective nature of this optimization. For different synthe-
sized topologies, we assume each device hosts two IP sub-
nets and has the following flow table pipeline: each interface
has a per-interface ACL table that drops traffic; and traffic
that is not dropped by the ACL table goes to a central rout-
ing table that decides the next hop. To generate rules on
each table, we first compute shortest path routing rules with
30% of the links masked out. This results in non-shortest
path forwarding in the network. For each interface’s ACL
table, we pick a random number (uniformly distributed be-
tween 0 to 5% of number of prefixes) of ACLs, with each
ACL dropping an random IP prefix in the network. With the
synthesized data plane, we use Veriflow [11] to generate the
network flow model. The path calculator was configured to
determine 5 shortest paths for each ingress-egress pair as the
candidate set.

70

80

90

100

0 20 40 60 80 100Pe
rc

en
ta

ge
 o

f
Eq

ui
va

le
nc

e
Cl

as
s

Pa
th

s
(%

)

Relative Hop Reduction (%)

random 20 nodes, 100 edges
random 30 nodes, 150 edges
random 40 nodes, 200 edges
spine-leaf s=4, l=16
spine-leaf s=6, l=24
spine-leaf s=8, l=32

(a) Relative Hop Reduction

20

40

60

80

100

-40 -20 0 20 40 60 80 100

Pe
rc

en
ta

ge
 o

f
Fl

ow
 T

ab
le

s
(%

)

Relative Rule Cost Reduction (%)

random 20 nodes, 100 edges
random 30 nodes, 150 edges
random 40 nodes, 200 edges
spine-leaf s=4, l=16
spine-leaf s=6, l=24
spine-leaf s=8, l=32

(b) Relative Rule Cost Reduction

Figure 2: Static Optimization Performance from Scratch

One-shot Optimization Performance: We conduct op-
timization from scratch for topologies of different structure
and size, with a = 0.5 and b = 0.5. For each device, we
compute the percentage of reduction in rule cost after op-
timization. For each equivalence class at each ingress in-
terface, we compute the percentage reduction in hop count
after optimization. Fig. 2 plots the CDF of relative reduction
in the rule costs and hop counts (We only show the rule-cost
reduction for flow tables that originally had at least one rule).
15% to 25% of the flows see a reduction in path length, and
60%-70% of the flow tables have smaller memory utiliza-
tion, demonstrating that the formulation and optimization is
promising and effective in this data set.

Fig. 3 compares the time taken for optimization in dif-
ferent topologies. Naturally, the optimization is slower in
larger topologies with more ECs. For the largest topology,
8 spines and 32 leaves with 989 ECs and 672 flow tables,
the computation time is 19s. We believe this preliminary
benchmark on the synthesized network suggests that Oreo
is feasible for optimizing larger networks too. Moreover, in

practice, the network-wide optimization from scratch can be
allowed more time as compared to smaller incremental up-
dates, which we evaluate next.

Low Latency Incremental Update: Transparent SDN
solutions must respond to network updates in real-time. In
the case of Oreo, latency may be incurred in one of two
stages: computing an updated network model and optimiz-
ing the updated model. It is known that computing a network
model can be achieved in real time [10, 11], so we focus our
evaluation on the optimization time. We expect Oreo to be
naturally fast for small updates, since it optimizes one EC at
a time, and most single OpenFlow updates will cause only
a small number of ECs to change their behavior. To verify
this idea, we ran the following experiment. After computing
the optimized flow paths for all equivalence classes, we re-
define ingress-egress behavior for one equivalence class, and
measure the time taken to recompute the optimized paths for
those packets. Figure 4 shows the CDF for the time taken
across all ECs. All updates are computed in less than 40 mil-
liseconds, with the worst median update time smaller than
17 milliseconds. That illustrates Oreo’s capability to sup-
port low-latency updates. If necessary, latency of Oreo can
be further improved by first installing a suboptimal config-
uration (possibly the one computed by the controller), and
subsequently replacing it with an optimized version.

Multi-Objective Tradeoff: To evaluate the multi-
objective optimization trade-off described in § 4, we assign
different values to a and b in the formulation. Fig. 5 shows
the trade-off between the two objectives by tuning the path
stretch weight a (b = 1 − a) on a random graph topology
with 30 nodes and 150 links. As a increases, Oreo favors
shorter paths with less hops, at the cost of generating more
forwarding rules. To the extreme case of a = 0.1, i.e., heav-
ily optimizing switch memory costs, we observe that many
forwarding paths that are 2 and 4 hops longer than before.

6. DISCUSSION
Managing Performance: By separating performance

from correctness, Oreo frees the upper layers from the bur-
den of performance management. So, tuning of network
performance shall be done by the network operators inter-
acting directly with Oreo. While a complete design of such
a configuration mechanism is to be addressed in future, we
observe that it should allow most administrators to simply
choose from a set of well defined configuration options, or,
in some more advanced cases, specify QoS classes for Traf-
fic Engineering. Even in cases where operators perform
finer-grained performance management, a separate manage-
ment mechanism will facilitate easier administration, due to
the separation of concerns for Openflow-based correctness
management abstraction.

The Openflow Abstraction: Oreo’s choice of Openflow
as the northbound abstraction may appear counterintuitive,
especially since Oreo only attempts to preserve reachability
characteristics. The “One-big-switch” abstraction would ap-
pear a more natural fit. We choose Openflow purely because
it is more universally accepted, and allows Oreo to be used
even with existing controllers. In future, when a standard-

 0

 5

 10

 15

 20

random-20-100

random-30-150

random-40-200

spine-leaf-4-16

spine-leaf-6-24

spine-leaf-8-32

0

250

500

750

1000
O

pt
im

iz
at

io
n

R
un

tim
e

(s
)

N
um

be
r

of
 E

Cs

runtime
numEC

Figure 3: Time taken for Optimization
from Scratch

0

20

40

60

80

100

 0 5 10 15 20 25 30 35 40

Cu
m

ul
at

iv
e

Fr
ac

tio
n

(%
)

Incremental Update Time (ms)

random 20 nodes, 100 edges
random 30 nodes, 150 edges
random 40 nodes, 200 edges
spine-leaf s=4, l=16
spine-leaf s=6, l=24
spine-leaf s=8, l=32

Figure 4: Time taken to update one
Equivalence Class

27.8

27.9

28.0

28.1

0.1 0.3 0.5 0.7 0.9
2080

2100

2120

2140

O
v
e
ra

ll
H

o
p
 R

e
d
u
ct

io
n
 (

x
1

0
3
)

O
v
e
ra

ll
R

u
le

 C
o
st

 R
e
d
u
ct

io
n

Value of Parameter a

Hop
Rule Cost

Figure 5: Effect of Different Optimiza-
tion Objective Weights

ized reachability abstraction is defined, Oreo could be used
with minimal changes to work with the new abstraction.

It may be noted that even though Oreo is designed to work
with Openflow, it doesn’t preserve full Openflow semantics,
one example being dataplane counters. We believe this is
justified, since counters are typically not relevant to a cor-
rectness specification, which Oreo tries to preserve. Never-
theless, it is possible to emulate dataplane counters in Oreo,
by using alias counters in the optimized dataplane.

Being completely transparent to higher and lower layers,
Oreo can be used in any standard OpenFlow network. Oreo
can also be used in conjunction with other transparent Open-
Flow enhancement tools like [9]. However, for the combi-
nation to be productive, some intelligent architecting may
be warranted. For example, switch memory management
mechanisms should be placed closer to the dataplane than
Oreo, so that they can meaningfully provide their function.

7. RELATED WORK
Fabric[2] is an alternative SDN architecture that is also

aimed at spearation of controller concerns. Fabric advocates
a horizontal separation between the edge (such as hyper-
visors in a datacenter, responsible for correctness) and the
core (providing connectivity with performance). In contrast,
Oreo relies on a vertical separation, and looks at both cor-
rectness and performance from a network-wide perspective,
without any distinction between the edge and the core. We
believe that Oreo’s approach to layering may fit better with
enterprise networks where correctness and performance are
not cleanly partitioned into the edge and the core.

Comparison of existing declarative OpenFlow program-
ming frameworks, such as Merlin [16], FatTire [15] and
SIMPLE[14], is already discussed in §1 and §2. At first
glance the architecture of an Oreo-based SDN platform
may look strikingly similar to one where a compiler like
NetKAT[1] is used to translate higher level specifications
into dataplane state. One example of such a layered archi-
tecture was proposed for compiling path queries into data-
plane rules[13]. Oreo is different from such architectures
in that it performs optimizations with a much greater scope,
since only the end-to-end reachability characterstics need to
be preserved. Moreover, Oreo is more than a simple trans-
lator — it actively monitors the dataplane and modifies it in
response to performance-related events.

Performing single-device optimizations on data plane
configurations has been quite well studied, mostly in rela-

tion to compressing firewall rules or routing tables to con-
serve switch memory. Work in this space includes Firewall
Compressor [12], Diplomat [4] and Optimal Routing Table
Constructor (ORTC) [5]. These tools optimize only switch
memory, and only locally at a device, lacking a network-
wide view. Thanks to such a view, Oreo can perform a more
diverse set of optimizations, and even in terms of switch
memory, achieve better compression, by eliminating redun-
dancy across the network rather than at a single device alone.

CacheFlow[9] is a rule caching mechanism that allows
multiple switches to behave as a single switch with infinite
memory. Oreo and CacheFlow are somewhat orthogonal in
that CacheFlow does not attempt to change the data plane,
whereas Oreo recomputes a new data plane with equivalent
semantics. They can be used simultaneously, or caching
functionality could be folded into Oreo.

8. CONCLUSION
In this paper, we argued why a clear separation of correct-

ness and performance goals can allow controllers to focus
on correctness and abstract representation, while providing
more universal optimization capabilities. Specifically, Oreo
is a generic and transparent layer which optimizes network
performance while preserving data plane equivalence.

Future work should build Oreo into a fully-featured data-
plane optimization platform, capable of both static and dy-
namic optimization, in terms of both performance and ro-
bustness. We expect to leverage the rich collection of ex-
isting work to tackle various challenges, including path se-
lection, rule placement etc., but joining these into a multi-
objective optimization will require new solutions. A longer-
term expansion of our architecture could continue the anal-
ogy to compilers: where a compiler like LLVM uses an
intermediate representation and can produce machine code
for many target platforms, Oreo could treat OpenFlow as an
intermediate representation and produce data plane instruc-
tions for non-OpenFlow switch hardware (e.g. a collection
of MPLS tunnels with appropriate ingress/egress process-
ing). More important than any one optimization, we believe
our improved modularity of the controller ecosystem can pay
substantial dividends to the SDN community.

This work was supported by NSF CNS Award #1513906
and by the Maryland Procurement Office under Contract
No. H98230-14-C-0141.

References
[1] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin,

D. Kozen, C. Schlesinger, and D. Walker. NetKAT:
Semantic Foundations for Networks. SIGPLAN Not.,
49(1):113–126, Jan. 2014.

[2] M. Casado, T. Koponen, S. Shenker, and
A. Tootoonchian. Fabric: A Retrospective on
Evolving SDN. In Proceedings of the First Workshop
on Hot Topics in Software Defined Networks, HotSDN
’12, pages 85–90, New York, NY, USA, 2012. ACM.

[3] Cisco Systems Inc. Cisco Application Centric Infras-
tructure Zero-Touch Fabric, 2013.

[4] J. Daly, A. X. Liu, and E. Torng. A difference res-
olution approach to compressing access control lists.
IEEE/ACM Transactions on Networking, 24(1):610–
623, Feb 2016.

[5] R. P. Draves, C. King, S. Venkatachary, and B. D. Zill.
Constructing Optimal IP Routing Tables. In In Proc.
IEEE INFOCOM, pages 88–97, 1999.

[6] Gurobi Optimization Inc. Gurobi Optimizer Reference
Manual, 2015.

[7] V. Heorhiadi, M. K. Reiter, and V. Sekar. Simplifying
Software-Defined Network Optimization Using SOL.
In 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 16), pages 223–
237, Santa Clara, CA, Mar. 2016. USENIX Associa-
tion.

[8] N. Kang, Z. Liu, J. Rexford, and D. Walker. Optimizing
the "One Big Switch" Abstraction in Software-defined
Networks. In Proceedings of the Ninth ACM Confer-
ence on Emerging Networking Experiments and Tech-
nologies, CoNEXT ’13, pages 13–24, New York, NY,
USA, 2013. ACM.

[9] N. Katta, O. Alipourfard, J. Rexford, and D. Walker.
Infinite cacheflow in software-defined networks. In
Proceedings of the Third Workshop on Hot Topics
in Software Defined Networking, HotSDN ’14, pages
175–180, New York, NY, USA, 2014. ACM.

[10] P. Kazemian, M. Chang, H. Zeng, G. Varghese,
N. McKeown, and S. Whyte. Real time network pol-
icy checking using header space analysis. In Presented

as part of the 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 13), pages
99–111, Lombard, IL, 2013. USENIX.

[11] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B.
Godfrey. Veriflow: Verifying network-wide invariants
in real time. In Proceedings of the 10th USENIX Con-
ference on Networked Systems Design and Implemen-
tation, NSDI’13, pages 15–28, Berkeley, CA, USA,
2013. USENIX Association.

[12] A. X. Liu, E. Torng, and C. R. Meiners. Firewall com-
pressor: An algorithm for minimizing firewall policies.
In INFOCOM 2008. The 27th Conference on Computer
Communications. IEEE, April 2008.

[13] S. Narayana, M. Tahmasbi, J. Rexford, and D. Walker.
Compiling Path Queries. In 13th USENIX Sympo-
sium on Networked Systems Design and Implementa-
tion (NSDI 16), pages 207–222, Santa Clara, CA, 2016.
USENIX Association.

[14] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar,
and M. Yu. SIMPLE-fying Middlebox Policy Enforce-
ment Using SDN. In Proceedings of the ACM SIG-
COMM 2013 Conference on SIGCOMM, SIGCOMM
’13, pages 27–38, New York, NY, USA, 2013. ACM.

[15] M. Reitblatt, M. Canini, A. Guha, and N. Foster. Fat-
tire: Declarative fault tolerance for software-defined
networks. In Proceedings of the Second ACM SIG-
COMM Workshop on Hot Topics in Software Defined
Networking, HotSDN ’13, pages 109–114, New York,
NY, USA, 2013. ACM.

[16] R. Soulé, S. Basu, R. Kleinberg, E. G. Sirer, and
N. Foster. Managing the network with merlin. In Pro-
ceedings of the Twelfth ACM Workshop on Hot Top-
ics in Networks, HotNets-XII, pages 24:1–24:7, New
York, NY, USA, 2013. ACM.

[17] VMWare Inc. The VMware NSX Network Virtualiza-
tion Platform, 2013.

[18] J. Y. Yen. An Algorithm for Finding Shortest Routes
from All Source Nodes to a Given Destination in Gen-
eral Networks. Quart. Applied Math, 27:526–530,
1970.

