o NICTA

Let’s build secure systems
oh a correct kernel

June Andronick

NICTA Funding and Supporting Members and Partners

Australian Government

Department of Broadband, Communications
and the Digital Ecomomy
Australian Research Councll

Credits O L

NICTA

Gerwin Klein

(part of) the Trustworthy Embedded Systems crowd

Agenda

Secure Systems “a la NICTA“

For 1 critical system:
- 1 destred securitg property P
- an interactive theorem prover
- a bit of patience

1. carefully design Yyour system
2. prove that the destgn enforces P
3. prove correctness of the TCB

4. prove Lsolation

Motivation @
NICTA

Aim: Trustworthy: Embedded Systems

Target: code-level guarantee real-world, usable systems
at reasonable cost (low-level, performant)

“confidential info cannot
“bug n user interface flow to public domain”
cannot harm patient”

A

“cannot get root Login remotely”

4

Approach e

NICTA

How to prove this is trustworthy?

Hardware

Approach

NICTA

How to prove this is trustworthy?
1. Trustworthy foundation = selL4
functional correctness for 10,000 loc

S50
\ &%’/)

[Formal functional spec]

@®
T Formal proof

Hardware of refinement
l l { Code] sl
Result: “Every behavior of the code Assumptions: - compiler + linker
is a behavior of the spec”) - assembly code (600 loc)

b~ .. -hardware (ARMv6)
\ o ﬂfi";;%%

Corollary: “execution always defined” PR OGH - cache/TLB

: - boot code (1,200 loc)

(no buffer overflows, ...)

2 ©

Approach

Hardware

NICTA

How to prove this is trustworthy?
1. Trustworthy foundation = selL4
functional correctness for 10,000 loc

2. Strategic componentized security architecture
formal guarantees for >1,000,000 loc

ldea: Strong guarantees about whole system
without needing to reason about all of its code

@
@

Approach

Untrusted Trusted
Component Component
Code Code

\

\

Hardware

NICTA

How to prove this is trustworthy?
1. Trustworthy foundation = selL4
functional correctness for 10,000 loc

2. Strategic componentized security architecture
formal guarantees for >1,000,000 loc

ldea: Strong guarantees about whole system
without needing to reason about all of its code

How: Using sel4’s access control (capabilities)

Approach

Untrusted Trusted
Component Component
Code Code

\

> V p
D

Hardware

NICTA

How to prove this is trustworthy?
1. Trustworthy foundation = selL4
functional correctness for 10,000 loc

2. Strategic componentized security architecture

WriteCap _ep ReadCap ep

t1 & w12

| 1 | E—

. ep
send(WriteCap_ep)li lreceive(ReadCap_ep)

vspace1 ' vspace?2
——1 —1

Careful design (e

NICTA

Untrusted CTrusted t Security
Corgpgnent or(n:gggen Architecture
ode
4 \\ A A

1a. minimal Trusted Computing Base

Components
PR — me—e———————

selL4 microkernel

Hardware

System Implementation

Case-study

Classified Networks

Goal:

Data from one classified
network must not reach
another

N

User Terminal

(J®

NICTA

11

Secure Access Controller (SAC)

Classified Networks

0

™~

Goal:

Data from one classified
network must not reach
another

Assumptions:
— User terminal will not
leak data
— All networks are
otherwise malicious

2

_' 3
/

\

7

K

v |-
SAC

o)

User Terminal

Control

-

* Secure Access Controller

Currently selected connection: None

Switch to Network:

@®Ts

@®s

®r Login as: Bob
o U Logout)

~

Design

®

NICTA
Classified Networks

o

ilﬂ.'
N

< <]
SAC
Control

User Terminal

13

Minimal TCB o

NICTA
B
Nic-A '— Nic-B

- £ Gigabit
P P o * Network Card
"M, Drivers

Network routing 3 4,0,000

We don’t want to rely on this complex, huge code
=» We use sel 4 dynamic capability access control

14

Minimal TCB @

NICTA

SAC

controller

Router

We don’t want to rely on this complex, huge code
=» We use sel4 dynamic capability access control IB

15

Minimal TCB Yo

NICTA

Trusted

Router

We don’t want to rely on this complex, huge code
=» We use sel4 dynamic capability access control @

16

Minimal TCB: Implementation

Trusted

Hand-written
1,500 LoC

@

~—

NICTA

17

Back to the general picture

Untrusted CTrusted t Security
Corgpgnent Orgggge” Architecture
ode
\\ ? A A
L_! _ < >

Components

P

selL4 microkernel

Hardware

System Implementation

1a. minimal Trusted Computing Base
m

Now: how to set-up the system with this design?
Problem: reality is not that simple

Back to the example

This is what we agree on the whiteboard

Now we need to implement this with actual kernel objects

~—— Nic-C '

SAC
controller

ooooo

00000000000000

Router

[1 ®
NICTA

Back to the example ®

This is what we agree on the whiteboard

Now we need to implement this with actual kernel objects

r " .
" |Manager

SAC
controller CTR EP RM
tcb_ctr <— — tcb_rm
> cnode_ctr < cnode_rm < =
i 5 E I
| pd_ctr] cep- | pd_rm |
/EIB\ _ send o rcv — /EZB\
pt_ctr, pt_ctr, || | pt_rm, pt_rm,
1. L1
y ¥

VI EEES N e A R N
4 N 4 N

N
f11 fi T fnj fys i fg f'nj

Every arrow is a capability!

Back to the general picture

Untrusted Trusted
Component Component
Code Code
}\ \\

| 41 _

SEE] |tE

Components

selL4 microkernel

Hardware

System Implementation

capDL: capability

distribution
language

NICTA
Formal Cap Security
Distribution Architecture

s LG

1a. minimal Trusted Computing Base
Cgee— Eamamaan o
1b. verified set-up (PrefembLg automatic)
L RERe—— ———
1c. verified abstraction (prefera bly automatic)
 RERe—— ~——e
— used for the security analysis

Example:
objl = Tcb[0 — CNodeCap 3, ...]
0bj3 = C'Node[302 — CNodeCap 9 Read , ...]

Agenda

Secure Systems “a la NICTA“

For 1 critical system:
- 1 destred securitg property P
- an interactive theorem prover
- a bit of patience

1. carefully design Yyour system
2. prove that the destgn enforces P
3. prove correctness of the TCB

4. prove Lsolation

Security Proof

Untrusted Trusted
Component Component

C d Code L
ode \ Theorem: S i S = P(S)
4_! /)\ U U USRS UUUT SRR

:/ Lemma sacSecurity:

(SAC-startup »* s) =
Components — 1s_contaminated s NicA

selL4 microkernel

Hardware

System Implementation

Security Proof e

Untrusted Trusted
Component Component

COde Code * ..
\ Theorem: Sp — S = P(S) 5
4 \ .
) 7 Where: Sg = s \
:¢ W R
RW,

Components

selL4 microkernel

Hardware

System Implementation

RM_1id -> Some ({cap_r_to_SAC_C, ...}, not_contaminated)
SAC_C_id -> Some ({cap_rw_to_NIC_C, ...}, not_contaminated)
NIC_A_id -> Some ({}, not_contaminated)

NIC_B_id -> Some ({}, contaminated)

Security Proof

Untrusted Trusted

Component Component
Code Code

Zar

Components

selL4 microkernel

Hardware

System Implementation

RM_prg =

Where: Sp =

>
>
>

RW

¢
s —s>s'=s3sVvsSs

s 5 s = let tc € trusted_component(s) in
let prg = program(tc) in
let pc = program_counter(c,s) in
let © = inst(prg,pc) in

[SysOp (SysRead cap_r_to_SAC_C), Step(tc,s,i,s’)
SysOp (SysRemoveAll cap_C_to_R),
SysOp (SysDelete cap_C_to_R),

]

Security Proof

Untrusted Trusted
Component Component
Code Code

% \
Components

selL4 microkernel

Hardware

System Implementation

Where: Sg =

RW

¢
s —s>s'=s3sVvsSs

s 5 s = let tc € trusted_component(s) in
let prg = program(tc) in

let pc = program_counter(c,s) in
let © = inst(prg,pc) in
step(tc, s,1,s")

s — s’ = let uc € untrusted_components(s) in
step(uc, s, any_inst, s')

Security Proof

Untrusted
Component Component
Code Code

Trusted

Formal Cap
Distribution

Ao

\

7

>

Security

Formal

Architecture proof of

property

-

Components

selL4 microkernel

Hardware

System Implementation

System’s behavior
s — s

Interleaving model

Trusted:
formal description

to
S —> S

Untrusted:
any behavior - only
restricted by caps

u o
S — S

Formal
Security
Property

50— 5 = P(s)

Agenda

Secure Systems “a la NICTA“

For 1 critical system:
- 1 destred securitg property P
- an interactive theorem prover
- a bit of patience

1. carefully design Yyour system
2. prove that the destgn enforces P
3. prove correctness of the TCB

4. prove Lsolation

Verified TCB

Trusted

Untrusted
Component Component
Code Code

P

Components

selL4 microkernel

Hardware

System Implementation

Formal Cap
Distribution

\

) o
i

S| EE

Security

Formal

Architecture proof of

property

System’s behavior
s — s

-

Interleaving model

Trusted:
formal description

to
S —> S

Untrusted:
any behavior - only
restricted by caps

u o
S — S

Kernel Functional
Specification

Kernel Security
Model

Formal
Security
Property

50— 5 = P(s)

v uses

Agenda

Secure Systems “a la NICTA“

For 1 critical system:
- 1 destred securitg property P
- an interactive theorem prover
- a bit of patience

1. carefully design Yyour system
2. prove that the destgn enforces P
3. prove correctness of the TCB

4. prove Lsolation

Proof of access control

Untrusted Trusted
Component Component
Code Code

\

2

\

/N z///
Components |77~

selL4 microkernel

Hardware

System Implementation

Formal Cap
Distribution

\] \

A r

Security Formal
Architecture proof of
property

System’s behavior
s — s

-

' uses !

\/4
Proof of AC L‘

: Uses
v

Interleaving model

Trusted:
formal description

t
S —> S

Untrusted:
any behavior - only
restricted by caps

u ooy
S — S

Kernel Functional
Specification

Kernel Security
Model

Formal
Security
Property

50— 5 = P(s)

L uses

What is AC good for? Qe

NICTA

Trusted

Linux

33

What is AC good for?

Oe

P P?

0000O 00O0O

0000

\ 4

Trusted

NICTA

Examples
* R does not write to
NicB if it does not have
a write capability to it
* R does not change
RM'’s program counter

I — T
Question: for all operation op s.t.
op /
S — S
what is allowed to change in s’ ?

*

34

Example

If op is set thread state tcb b v

If tcb_a is running in state s where s is:

o

(tcb_a <+— — tcb_b)
> chode_a <+ chode_b < -
E ' E LZ ! iB\lee-ked
| pd_a u A u pd_b ‘/Runnjng
/IZIZIZ\I\ | Send]
pt_a; pt_a, -] pt by pt_b,
fis fii fog f'41 i o f'nj

Then in which condition may tcb_b change

and what is allowed to change?

Example

If op is set thread state tcb b v
If tcb_a is running in state s where s is:

(tcb_a <+— — tcb_b)
> chode_a < chode_b < -
E ' E LZ ! iB\lee-ked
| pd_a = o< = pd_b ‘|Runnjng
= P =
AR R | Send
pt_a; pta, |- -] pt by pt_b,
fis fii s f's i T f'nj
S)

Obvious (but wrong) solution:

only the thread-state field of tcb_b is allowed t~ -" ange
and only under the following condi*-
-tcb_ahasacar* s on n state

- or tck . close =0"iS waiting on in state s
- or tcb policy yped region containing tcb_b, in state s

Solution: Labelling

_________________ A e, BB B
tch_a <+— — tcb_b
: ~ cnode_a <! E cnode_b - s
| pd.a E E ~ep E H pd_b
pt_a; pt_a, E -] pt by pt_b,
TR ST ST fy o fa fh fy
Static graph G: A EP B We prove:
6 Send Rcv .
1. Graph preservation

Given by user
y UNIV UNIV (authority confinement)

State must be subset a of G 2. Access control at the
label level

G is subjective: current label contains the
(untrusted) running thread

D

Solution: Labelling

If A is the running label in G
then for any operation op that changes s to s’,

for any object obj of label B,

obj can only be changed if A=B or in 4 small precise cases, as:
“‘obj is a TCB blocked on an endpoint of label EP,
and (A,Send,EP) CG
and only the thread-state of obj can be changed, to Running”

A EP B
6 We prove:
Send Rcv
1. Graph preservation
UNIV UNIV (authority confinement)

A EP 2. Access control at the

B
é Song >@« — & label level

UNIV UNIV

Agenda

Secure Systems “a la NICTA“

For 1 critical system:
- 1 destred securitg property P
- an interactive theorem prover
- a bit of patience

1. carefully design Yyour system
2. prove that the destgn enforces P
3. prove correctness of the TCB

4. prove Lsolation

Conclusion
Untrusted Trusted
Component Component
Code Code

\

2

\

selL4 microkernel

Hardware

System Implementation

/N z///
Components |77~

Formal Cap
Distribution

\] \

A r

Security Formal
Architecture proof of
property

System’s behavior
s — s

-

' uses !

\/4
Proof of AC L‘

: Uses
v

Interleaving model

Trusted:
formal description

t
S —> S

Untrusted:
any behavior - only
restricted by caps

u ooy
S — S

Kernel Functional
Specification

Kernel Security
Model

Formal
Security
Property

50— 5 = P(s)

L uses

Conclusion

(e

Untrusted
Component
Code

', Components

____Hardware |

System Implementation

Challenges:

Trusted
Component
Code

’

Formal Cap
Distribution

e
N

e L L

/

S
l_ v
v
_sel.4 microkernel |/

Automation

verified code generator
from high level code

Security

Formal

Architecture proof of

property

System’s bepawor

S —> S8

it

Interleaving model

Trusted:
formal description

5 f
S - 8

o Untrusted:
; uses : any behavyior - only
restricted by caps
Proof of AC S5 8
e)
‘:y uses

Kemel Functional
Specification

Integration

system trace reasoning,
concurrency

Kernel Security
Model

Property

Formal
Security

"

L uses

Confidentiality

preserved by

refinement

NICTA
Results so far:

Case study sec. proof

selL4 enforces integrity

capDL

selL4 correctness proof

certification: ST

selL4 binary and formal
spec released

Proof engineering

e refactoring
» efficient proof rerun

41

Google ertos

Questions?

I'm Feeling, Lucky

43

NICTA

42

