MAKING
HIGH-CONFIDENCE SYSTEMS
LOW-COST

Alex Dean
Center for Efficient, Scalable and Reliable Computing

Dept. of ECE

North Carolina State University

Embedded and
Cyber-Physical Systems

Abstractions May Not Scale

)
Q
c
o)
&
—
®)

ey
—
3]

ol

Time

= Growing gap between high-performance CPUs
and embedded MCUs

= Abstractions which work at top don’t
necessarily work at bottom

My Industry Perspective

= Past 10 years doing > 50 in-depth firmware design
reviews for embedded systems industry

Thermostat, furnace/ AC/heat pump control, Jacuzzi
control

Electric motor control and protection

Switching power supplies for telecom, servers, PCs, etc.
o Buck, boost, inverter, etc.

Process control: pressure & flow meters (mag, ultrasonic,
etc.), oil/gas metering & mixing, high pressure regulator

Synchronous AC transfer (generator, etc.)
Water heater controllers, pump controllers

Rigorous Reviews

= Inspect requirements, architecture, detailed
design, source code, object code. List potential
1ssues.

= On-site day-long visit for nearly all reviews to
discuss issues, screen for risks

= Afterwards, write detailed report to document
review

Vho is this person? Background

=@ You haven't sailed the Chesapeake until you've run
aground in the Chesapeake

= | build systems to keep my feet grounded

@ Research: How to make embedded systems fis/,
and by combining techniques
from . .
and

= 3 embedded systems courses

= Programing MCU and peripherals in C (16-bit MCU)

= Analyzing and optimizing for speed, energy and
responsiveness (16 bit MCU w/RTOS, ARM Cortex-A8 w/
Linux)

= Performance analysis and optimization of complex embedded
systems (ARM Cortex-A8 , Linux)

System Characteristics

Mostly 8 and 16 bit processors, but some 32
bitters

Memory size from 4 kB to 256 MB

CPU speed from 400 kHz to 600 MHz

Mostly superloop+ISRs, some non-preemptive
task schedulers, some RTOSs, a couple with
Linux

Digital electronic parts costs from $2 to $1500

Various embedded networks (wired and
wireless)

Requirements

= Business Requirements
= Must sell - Acceptable price (BOM)
o Competitive market forces prices down

= Must get to market on time - Acceptable
development schedule (NRE)

= Technical Requirements

» Must work - Correct functionality and timing
o Typically reactive and real-time

Development Effort

Need to deliver a product on time with given
statf

Risk reduction - go with proven technology
rather than novel one

Development team size = 1, 2 or maybe 3 for
large projects
Staff are experts in domain area, good in

implementation, rarely current with academic
research

Won't get it perfect, but want it to work well
enough (robustness)

Maintenance Effort

= How do you patch a deeply embedded system?
May have no internet connection ’
Very narrow pipe
Physically return the device?
Send out a technician?

= Complexity of implementing bootloade I, and
resulting authentication requirements

= Look at all the effort at rooting phones, tablets,
game consoles

Cost Constraints

= BOM cost -> System resource constraints
» Embedded computer
= Communications and network

m NRE cost -> Schedule constraints
= Development effort

System Resources

= Embedded computer
= RAM, ROM

= Compute cycles
= Power, energy
= File system

= Communications

= Uses Embedded control network
» [Limited Bandwidth, packet size
= MAC, predictability

Observation: Fragmentation

O] 1:/[a>]§g CPU architectures 5 Standard MCU tools

= ARMV7 » Good C compilers,

= Power Hmi deb
@ Major MCU architectures OPURIIZCES, CLEDUSEETS

= PIC m Rare MCU tools

68HC11

Coldfire = Stack depth bounding
MSP430

AVR = Static timing analysis
8051

ARMv3 = Code coverage of tests
ARM Cortex-M0
M16C

C6x DSP
Blackfin DSP
56Fx DSP

= Good news: gcc

Observation: Abstraction
Mismatches

= Can’t use resource-rich mentality

m Constraints

= Market pressures -> cost
= Cost, power, energy -> limitations on memory, speed,

size,
= Developer expertise - generalists rather than specialists

= Mismatches

= Java, abstraction, processing throughput (same skills
don’t scale across 10,000x (400 kHz to 4 GHz)
performance difference)

= Threads, timesharing, multiuser, multiprocess
= Multicore
= Virtual memory

Practical Design Approaches

Programming language

Scheduling approaches

Mixed-criticality system implementation
Run-time monitoring

Power and energy efficiency
Networking

Growing mismatch between deeply embedded
computing and everything else

Programming Language

= Abstration
= Java and other abstract, portable languages

= Disadvantages
= Much greater requirements for MHz and memory

= Abstraction reduces performance and ability to
access hardware

= Real-time requirements hard to meet

Practical Approach

= Programs written mostly in C (a little C++)

» Good tool infrastructure available for constrained
hardware

= Good language due to proximity to hardware, not
much obfuscating abstraction

= Developer expertise

Scheduling Approaches

= Goal: create a predictably responsive system

= Abstraction
= Use fully-preemptive prioritized scheduling

= Preemption complications
= Requires more RAM (stack per thread)
= Introduces data race conditions
= Requires more sophisticated development tools

Practical Approach

= Usually no preemptive task scheduling
= Most common: superloop + ISRs

= | ess common: non-preemptive tasks + ISRs. State
machines for long tasks.

= [east common: fully-preemptive tasks + ISRs (RTOS)

= Never underestimate the power of an ISR

Mixed-Criticality Systems

= Goal: Isolate high-criticality processing from
rest of system

= Abstractions
= Jime
o Use fully-preemptive prioritized scheduling
= Space

o Use processes with hardware-based memory protection

Practical Approach

= Architect the system carefully, with practical
partitioning
= Iime
= Rely on “scheduler” - Use ISRs for most critical
operations, then high-priority tasks (if supported)
= Space

= Practice data hiding, modular program design, etc.

= Protect critical data with complement or block CRC,
verify before use

Run-Time Monitoring

Abstraction
= Not covered except by specialists

Goal: Ensure system is either running correctly
or else is disabled

Typical approach: Watchdog timer
= Only detects serious timing errors
Enhance with safety invariants

= Must be easy to compute and test
= Detect corrupted variables, missed deadlines

Power and Energy Efficiency

= Why:
= Limited energy source - battery, supercapacitor

= [imited power source - energy harvesting
(photovoltaics, etc.), 4-20 mA current loop

= Limited cooling - high temperature, fanless device ->
limited power dissipation.

= Strategy

= Energy: Run fast when needed, sleep when possible
= Power: Run slow when needed, sleep when possible

Abstracted Approach

= Abstraction: extensive support, standardized
platforms

Dynamic voltage and frequency scaling with
multiple OPPs

Multiple independent voltage domains (cost for
power converters, signal level translators)

Linux standard device drivers, power management
callbacks

cpufreq interface with governors

Practical Approaches

= Use efficient code (optimize heavily)

= Select good components - low power, sleep

modes, etc.

Mechanisms

= Manually scale processor speed with clock divider &
oscillator

= Shut off unused peripherals, including network and

radio. May need to write own code to do this.
Optimization and debugging are difficult
without good tool support

Networking

= Goals:

= Predictable performance for small messages (up to
16 bytes of data in packet)

= Challenges:

= Limited bandwidth, if any

= Network protocol stacks require independent
threads of control. Need to make this work with
limited scheduling environment

= No support for authentication

Example: Automotive Remote
Keyless Entry System

Constraints: size, weight, cost, battery life

Early 1990s: fixed codes used
= Major problem with vehicle theft

Colleagues at United Technologies developed
efficient rolling code implementation on 6805
microcontroller

= Had to argue for the extra nickel to buy an MCU

with 64 bytes of RAM (rather than 32), enabling
more secure algorithm

Later MCU makers added hardware support to
accelerate these devices, given large market

Summary

= Need to think creatively

E Some abstractions aren’t practical for deeply-
embedded systems, but still need system to
work

Thanks for your attention!
alex_dean@ncsu.edu
http.//www.cesr.ncsu.edu/agdean

