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Safe and Secure 
Extensible Systems

Extensible systems are prevalent:

Volunteer networks.

Browsers, operating systems.

Virtual communities (eg, Second Life)

Provides adaptability through customization, 
but threatens safety and security.



Safe and Secure 
Extensible Platforms
How can we build extensible systems without 
compromising integrity?

Using manifest security, which means:

Rigorously specified policies.

Guaranteed compliance with policy.

Direct relationship to running code.



Current Approaches

Extensible systems rely on two main methods 
for ensuring safety and security:

Restriction: limit potential damage by 
limiting capabilities of extensions.

Detection: monitor execution to detect 
violations.

These are means ... but to what ends?



Current Approaches

Restriction limits both good and bad 
behavior.

In the limit, extensibility is disallowed.

In practice, extensions have very limited 
capabilities.

Tension between expressiveness and safety & 
security of extensions.



Current Approaches

Detection requires run-time monitoring, and 
provides only a post-mortem analysis.

Overhead can be significant.

Little help with ensuring good behavior.

Applies only to conditions that can be 
checked at run-time!

eg, information flow vs access control



What’s Really At Stake?

Current methods attempt to address a high-
level problem using low-level methods.

Violates the “end-to-end” principle.

Cannot define “security” at the level of 
bits, bytes, packets, address spaces, ....

Safety and security are governed by 
principals and policies, not bits and bytes.



A Logical View

Fundamentally, we wish to prove a theorem 
about a program.

Does not violate API restrictions.

Does not leak sensitive information.

Complies with access control policies.

How can we state and prove such theorems 
about practical systems?



Implementing Manifest 
Safety and Security
ConCert Project: Trustless Grid Computing

Manifest safety for mobile code.

Grey Project: Proof-Carrying Authorization.

Manifest security for access control.

A New Project (TM): Secure Extensibility.

Manifestly secure extensible systems.



Trustless Grid Computing 
in ConCert

A general framework for grid computing.

Loosely coupled volunteer network.

Work-stealing scheduler.

Manifest safety: verification, not trust.

Hosts specify safety policy.

Clients must prove compliance.



The ConCert Grid





Manifest Safety

Logical specification of safety properties.

Execution safety: no illegal instructions, no 
branches to unsafe code.

Memory safety: no out-of-bounds array 
accesses, no stack violations.

Logics include assembly-level type systems 
and Hoare-like annotations.



Manifest Safety

Enforcement by proof- and type checking.

Reject programs that do not pass checks.

Compliance ensured by certifying compilers.

Transfer source-level safety properties to 
object-level code.

Produce formal certificates of compliance 
with host policy.



Certification and 
Verification Methods
Proof-Carrying Code.

VCGen + Theorem Proving for certification.

LF representation of proofs.

Typed Assembly Language.

Typed compilation and type checking.

Type annotations on object code.



TAL Certification



A TAL-R Snippet
;; stack is described by S
;; sp  : S
;;
;; virtual clock reads N+k+1
;; vck : N+k+1
;;
;; ebx contains an int->int that runs in at most k steps
;; ebx : ALL i:Nat. ALL r:ST.
;;         { eax:int,
;;           sp:{ eax:int, sp:r, vck:i }->0 * r
;;           vck:i+k }->0

add eax, eax, edx ;; consume one clock tick

;; vck : N+k

call ebx [N'] [S] ;; instantiate i=N and r=S,
                  ;; place retaddr on stack, jump

;; vck : N



How TAL Defends 
Against Safety Attacks

Malicious source code.

loadFile “accounts.qdf” is rejected.

Malicious hand-written assembly code.

call loadFile is ill-typed.

mov sp[0],0xfe00b0c4; ret  
is also ill-typed



How TAL Defends 
Against Attacks

One can think up more and more “tricks” ...

Indirect jumps, stack over-runs, etc.

But it is a theorem that no well-typed 
assembly program can violate the safety 
policy.

No attack will pass type checker!



How TAL Defends 
Against Attacks

Aha!  What if we change the type system?

Nope, must supply a proof of soundness 
with respect to the safety policy!

Rats!  Is there no way to defeat it?

No!  Not within the confines of the policy.

But the policy may be “wrong” (more on 
this later).



What Can Be Certified?

How far can we take this?  What sort of 
properties can we certify?

Short answer: anything for which one can 
devise a type system!

eg, TAL-R precludes certain DoS attacks

Long answer: limited by how hard it is to 
generate and check proofs.



From Safety to Security

Code safety is necessary for security.

Precludes violation of language semantics.

Source-level reasoning, not object-level 
enforcement.

Can we extend manifest safety to manifest 
security?



Manifest Security

Security policies are stated in a formal 
logical system.

Augmented by certificates to identify 
principals and sign assertions.

Assertions involve accessibility, ownership, 
delegation, etc.

No fundamental limits on expressive power!



Manifest Security

Compliance is demonstrated by a proof.

eg, principal must prove that his/her 
access to a resource is entailed by the 
policy.

Compose rules of deduction, starting with 
policy axioms and external certificates.

Unforgeable, mechanically checkable.



Manifest Security

Enforcement is by proof checking and 
cryptography.

Present proof to reference monitor.

Proof checker verifies evidence.

Proof provides an “audit trail”.

Direct expression and enforcement of 
intended security constraint!



Manifest Security

Policies are formally analyzable.

eg, using cut elimination to investigate 
existence of proofs of certain assertions

provides a mathematical foundation for 
understanding consequences of a policy.

Security policies can be very hard to 
understand!



Proof-Carrying 
Authorization Logic

policy



Proof-Carrying 
Authorization Logic

A simple policy (all axioms are signed):
reg says class (s, c) ...
prof says
  if reg says class(s, c), then
    mayacc (s, r)

A proof of mayacc (s, r) involves:

Certificate acquisition to est. identity.

Logical inference from axioms.



How PCA Defends 
Against Attacks

Replay attacks: client attempts to re-use 
previous authorization.

Access control theorem and capability are 
time-stamped.

Fraudulent assertions by principals.

Requires breaking digital signatures.



How PCA Defends 
Against Attacks

Misapplication of policy rules.

Prevented by proof checker, which ensures 
validity of all proofs.

Fraudulent policies.

All axioms are signed, so must break 
cryptographic framework.



How PCA Defends 
Against Mistakes

A principal may sign an assertion with 
unexpected consequences.

eg, a quantifier rotation ∀∃ vs ∃∀

Requires policy analysis to validate.

Instance of mechanized meta-reasoning.



How PCA Defends 
Against Mistakes

Proofs provide an audit trail for analyzing 
attacks.

Reveals who said what and why this was 
sufficient for access.

Facilitates tracking errors in policy.

Meaningful at the level of the policy, not at 
the level of some enforcement mechanism!



Secure Extensibility

How can we use manifest safety and security 
to implement safe extensibility?

Testbed: extensible browser architecture.

Safety against low-level attacks.

Security against unauthorized access and 
insecure information flows.



Manifestly Secure 
Extensibility

Extend logics beyond safety and access 
control.

privacy and integrity

epistemic logic for info flow?

Integrate security obligations into the 
programming language.

track proofs in the type system



Manifestly Secure 
Extension Architecture



Manifest Security 
Infrastructure

Logical frameworks.

Specifying and analyzing security logics 
and programming languages.

Representing and checking proofs.

Certifying theorem provers.

Finding proofs of logical assertions.



Manifest Security 
Infrastructure

Theoretical investigations.

Logics to express security policies.

Analysis of logics and languages.

Algorithms for proof checking and proof 
search.

Informed by and informing practice!



Manifest Safety and 
Security

Make safety and security policies explicit.

Rigorously specified in a suitable logic.

Analyzable and mechanizable.

Enforce compliance of extensions with policy.

Require explicit proofs of compliance.

Verify using proof- and type checking.



Manifest Safety and 
Security

Validate policies by meta-theoretic analysis.

Ensure that policies capture intentions.

eg, not too restrictive, not too permissive

Validate languages by semantic analysis.

Ensure that accepted programs are indeed 
well-behaved.


