
 1

Masquerade Attack Detection Using a Search-Behavior
Modeling Approach

Malek Ben Salem and Salvatore J. Stolfo

Computer Science Department, Columbia University

500 West 120th Street, New York, NY, 10027
{malek,sal}@cs.columbia.edu

Abstract

Masquerade attacks are unfortunately a familiar security problem that is a consequence of identity

theft. Detecting masqueraders is very hard. Prior work has focused on user command modeling to identify
abnormal behavior indicative of impersonation. This paper extends prior work by presenting one-class
Hellinger distance-based and one-class SVM modeling techniques that use a set of features to reveal user
intent. The specific objective is to model user search profiles and detect deviations indicating a masquerade
attack. We hypothesize that each individual user knows their own file system well enough to search in a
limited, targeted and unique fashion in order to find information germane to their current task.
Masqueraders, on the other hand, will likely not know the file system and layout of another user's desktop,
and would likely search more extensively and broadly in a manner that is different than the victim user
being impersonated. We extend prior research that uses UNIX command sequences issued by users as the
audit source by relying upon an abstraction of commands. We devised taxonomies of UNIX commands and
Windows applications that are used to abstract sequences of user commands and actions. We also gathered
our own normal and masquerader data sets captured in a Windows environment for evaluation. The
datasets are publicly available for other researchers who wish to study masquerade attack rather than
author identification as in much of the prior reported work. The experimental results show that modeling
search behavior reliably detects all masqueraders with a very low false positive rate of 1.4%, far better
than prior published results.

1. Introduction

The masquerade attack is a class of attacks, in which a user of a system illegitimately poses as, or

assumes the identity of another legitimate user. Identity theft in financial transaction systems is perhaps the
best known example. Masquerade attacks are extremely serious, especially in the case of an insider who
can cause considerable damage to an organization. The insider attack detection problem remains one of the
more important research areas requiring new insights to mitigate against this threat.

A common approach to counter this type of attack, which has been the subject of prior research, is to

develop novel algorithms that can effectively identify suspicious behaviors that may lead to the
identification of imposters. We do not focus on whether an access by some user is authorized since we
assume that the masquerader does not attempt to escalate the privileges of the stolen identity, rather the
masquerader simply accesses whatever the victim can access. However, we conjecture that the masquerader
is unlikely to know how the victim behaves when using a system. It is this key assumption that we rely
upon in order to detect a masquerader. Thus, our focus in this paper is on monitoring a user’s behavior in
real time to determine whether current user actions are consistent with the user’s historical behavior. The far
more challenging problems of thwarting mimicry attack and other obfuscation techniques are beyond the
scope of this paper.

 2

Masquerade attacks can occur in several different ways. In general terms, a masquerader may get access

to a legitimate user’s account either by stealing a victim’s password, or through a break in and installation
of a rootkit or keylogger. In either case, the user’s identity is illegitimately acquired. Another perhaps more
common case is laziness and misplaced trust by a user, such as the case when a user leaves his or her
terminal or client open and logged in allowing any nearby co-worker to pose as a masquerader. In the first
two cases, the identity thief must log in with the victim’s credentials and begin issuing commands within
the bounds of one user session. We conjecture that legitimate users initiate the same repeated commands
each time they log in to set their environment before using it, initiate some set of applications (read email,
open a browser, or start a chat session) and similarly, clean up and shut down applications when they log
off. Such repeated behaviors constitute a profile that can be modeled and used to check the authenticity of a
user session early before significant damage is done. The case of hijacking a user’s session is perhaps a bit
more complicated. In either case, a monitoring system ought to detect any significant deviations from a
user’s typical profiled behaviors in order to detect a likely masquerade attack. Ideally, we seek to detect a
possible masquerader at any time during a session.

 In this paper we extend prior work on modeling user command sequences for masquerade detection.

We use one-class support vector machines and introduce the use of the Hellinger Distance metric to
compute a similarity measure between the most recently issued commands that a user types with a model of
the user’s command profile. Previous work has focused on auditing and modeling sequences of user
commands including work on enriching command sequences with information about arguments of
commands [1, 3, and 4].

 We propose an approach to profile a user’s behavior based on a ‘taxonomy’ of UNIX commands and

Windows applications. The taxonomy abstracts the audit data and enriches the meaning of a user’s profile.
Hence, commands or applications that perform similar types of actions are grouped together in one category
making profiled sequences more abstract and meaningful. Furthermore, modeling sequences of commands
is complicated whenever “Never-Before-Seen-Commands” are observed. A command taxonomy reduces
this complexity, since any distinct command is replaced by its category, which is very likely to have been
observed in the past. Commands are thus assigned a type, and the sequence of command types is modeled
rather than individual commands.

One particular type of command is information gathering commands, i.e. search commands. We

conjecture that a masquerader is unlikely to have the depth of knowledge of the victim’s machine (files,
locations of important directories, available applications, etc.), and hence, a masquerader would likely first
perform information gathering and search commands before initiating specific actions. To this extent, we
conduct a second set of experiments using a Windows data set that we have gathered in our department. We
model search behavior in Windows and test our modeling approach using our own data, which we claim is
more suitable for evaluating masquerade attack detection methods.

 In Section 2 of this paper, we briefly present the results of prior research work on masquerade

detection. Section 3 expands on the objective and the approach taken in this work, and presents the
experiments conducted to evaluate whether a command taxonomy impacts the efficacy of user behavior
models. In section 4, we present our home-gathered dataset which we call the RUU dataset. In section 5, we
discuss experiments conducted by modeling search behavior using the RUU dataset. Section 6 discusses the
results achieved, summarizes the contributions of the paper, and presents our ongoing work to improve and
better evaluate our proposed modeling approach.

2. Related Work

 3

In the general case of computer user profiling, the entire audit source can include information from a
variety of sources, such as command line calls issued by users, system calls monitoring for unusual
application use/events, database/file accesses, and the organization policy management rules and
compliance logs. The type of analysis used is primarily the modeling of statistical features, such as the
frequency of events, the duration of events, the co-occurrence of multiple events combined through logical
operators, and the sequence or transition of events. However, most of this work failed to reveal or clarify
the user’s intent when issuing commands or running processes. The focus is primarily on accurately
detecting change or unusual command sequences. In this section, we focus on the approaches reported in
the literature that profile users by the commands they issue.

Schonlau et al. in [1] applied six masquerade detection methods to a data set of “truncated” UNIX
commands for 70 users collected over a several month period. Each user had 15,000 commands collected
over a period of time ranging between a few days and several months. 50 users were randomly chosen to
serve as intrusion targets. The other 20 users were used as masqueraders. The first 5000 commands for each
of the 50 users were left intact or “clean”, the next 10,000 commands were randomly injected with 100-
command blocks issued by the 20 masquerade users. The commands have been inserted at the beginning of
a block, so that if a block is contaminated, all of its 100 commands are inserted from another user’s list of
executed commands. The complete data set and more information about it can be found at
http://www.schonlau.net. The objective was to accurately detect the “dirty” blocks and classify them as
masquerader blocks. It is important to note that this dataset does not constitute ground truth masquerade
data, but rather simulates impersonation.

The first detection method applied by Schonlau et al. for this task, called “uniqueness”, relies on the

fact that half of the commands in the training data are unique and many more are unpopular amongst the
users. Another method investigated was the Bayes one-step Markov approach. It is based on one step
transitions from one command to the next. The approach, due to DuMouchel (1999), uses a Bayes factor
statistic to test the null hypothesis that the observed one-step command transition probabilities are
consistent with the historical transition matrix.

A hybrid multi-step Markov method has also been used as well. When the test data contain many

commands unobserved in the training data, a Markov model is not usable. Here, a simple independence
model with probabilities estimated from a contingency table of users versus commands may be more
appropriate. The method used automatically toggles between a Markov model and an independence model
generated from a multinomial random distribution as needed, depending on whether the test data are
“usual”, i.e. the commands have been previously seen, or “unusual”, i.e. Never-Before-Seen Commands
(NBSCs). We note with interest that our taxonomy of commands reduces, if not entirely eliminates, the
problem of modeling “Never-Before-Seen-Commands” since any command is likely to be categorized in
one of the known classes specified in the taxonomy. Hence, although a specific command may never have
been observed, members of its class probably were.

IPAM (Incremental Probabilistic Action Modeling), another method applied on the same dataset, and

used by Davidson & Hirsch to build an adaptive command line interface, is also based on one-step
command transition probabilities estimated from the training data [5,16]. A compression method has been
also applied to the Schonlau data set based on the premise that test data appended to historical training data
compress more readily when the test data stems indeed from the same user rather than from a masquerader,
and was implemented through the UNIX tool compress which implements a modified Lempel-Ziv
algorithm. A sequence-match approach has been presented by Lane & Brodley [6]. For each new command,
a similarity measure between the most 10 recent commands and a user’s profile is computed. A method,
that is significantly different from other intrusion detection technologies, was presented by Coull et al. [11].
The method is known as semi-global alignment and is a modification of the Smith-Waterman local
alignment algorithm. Oka et al. [13, 14] had the intuition that the dynamic behavior of a user appearing in a
sequence can be captured by correlating not only connected events, but also events that are not adjacent to

 4

each other while appearing within a certain distance (non-connected events). Based on that intuition they
have developed the layered networks approach based on the Eigen Co-occurrence Matrix (ECM).

Maxion and Townsend [3] applied a naïve Bayes classifier, which has been widely used in text

classification tasks, and they provided a thorough and detailed investigation of classification errors [7]
highlighting why some masquerade victims are more vulnerable than others, and why some masqueraders
are more successful than others. Maxion and Townsend also designed a new experiment, which they called
the “1v49” experiment, in order to conduct this error analysis. Another approach called a self-consistent
naïve Bayes classifier was proposed by Yung [12] and applied on the same data set. Wang and Stolfo used a
naïve Bayes classifier and a Support Vector Machine (SVM) to detect masqueraders [4]. Their experiments
confirmed, that for masquerade detection, one-class training is as effective as two class training.

These specific algorithms and the results achieved for the Schonlau datasets appear in Table 1 (with

True Positive rates displayed rather than True Negatives). Performance is shown to range from 1.3% -
7.7% False Positive rates, with a False Negative rate ranging from 24.2% to 73.2% (alternatively, True
Positive rates from 26.8 % to 75.8%). Clearly, these results are far from ideal. The problem of effective and
practical masquerade detection remains quite challenging.

Method True Positives (%) False Positive (%)
Uniqueness 39.4 1.4

Bayes one-step Markov 69.3 6.7

Hybrid multi-step Markov 49.3 3.2
Compression 34.2 5.0

Sequence Match 26.8 3.7

IPAM 41.1 2.7
Naïve Bayes (Updating) 61.5 1.3
Naïve Bayes (No Upd.) 66.2 4.6

Semi-Global Alignment 75.8 7.7

Eigen Co-occurrence Matrix 72.0 3.0
Naïve Bayes + EM 75.0 1.3

Table 1: Summary of accuracy performance of Two-Class Based Anomaly Detectors Using the Schonlau

Data Set.

Finally, Maloof and Stephens proposed a general system for detecting malicious insider activities by
specifically violations of “Need-to-Know” policy [21]. Although the work is not aimed directly at
masquerade detection, such a system may reveal actions of a masquerader. They define certain scenarios of
bad behavior and combine evidence from 76 sensors to identify whether a user is malicious or not.

3. Objective and Approach

When dealing with the masquerader attack detection problem, it is important to remember that the

attacker has already obtained credentials to access a system. When presenting the stolen credentials, the
attacker is then a legitimate user with the same access rights as the victim user. Ideally, monitoring a user’s
actions after being granted access is required in order to detect such attacks. Furthermore, if we can
determine the user’s intent, we may better determine if the actions of a user are malicious or not. We have
postulated that certain classes of user commands reveal user intent. For instance, search should be an
interesting behavior to monitor since it indicates the user lacks information they are seeking. Hence, we
define a taxonomy of commands to readily identity and model search behavior which appear using a variety

 5

of system-level and application-specific search functions. Another behavior that is interesting to monitor is
remote access to other systems and the communication or egress of large amounts of data to remote
systems, which may be an indication of illegal copying or distribution of sensitive information. Once again,
the taxonomy defined allows a system to automatically audit and model a whole class of commands and
application functions that represent the movement or copying of data. User behavior naturally varies for
each user. We believe there is no one model or one easily specified policy that can capture the inherent
vagaries of human behavior. Instead, we aim to automatically learn a distinct user’s behavior, much like a
credit card customer’s distinct buying patterns.

Our objective is to model the normal pattern of submitted commands of a certain user in a UNIX

environment assuming that the masquerader will exhibit different behavior from the legitimate user and this
deviation will be easily noticed. In order to detect the deviations, we compute the Hellinger distance
between the frequencies of recent commands or command categories that show up in one block of
commands of window size w and a second block of the same window size shifted by only one command.
Hence, this approach essentially tracks a user’s behavior and measures any changes in that behavior. Any
significant change will raise an alarm. In the following we present the command taxonomy that we have
developed as well as the Hellinger distance applied to blocks of issued commands.

3.1. User Command Taxonomy

We abstract the set of Linux/Unix commands and Windows applications into a taxonomy of command

categories as presented in Figure 1. In particular, we are interested in identifying the specific set of
commands that reveal the user’s intent to search, to change access control privileges, and to copy or print
information. Once these commands are identified, we can extract features representing such behavior while
auditing the user’s behavior.

Figure 1: Taxonomy of Linux and Unix Commands (left) and Windows applications (right).

The Unix taxonomy has 14 different categories: Access Control, Applications, Communications /

Networking, Display / Formatting, Execution / Program Control, File System, I/O Peripherals, Information
Gathering, Other, Process Management, System Management, Unknown, and Utilities. Most categories
were further classified into sub-categories, however some did not require more granularity, such as the

 6

Resource Management category. The Information Gathering category includes commands such as find and
fgrep. Examples of commands in the Process Management category include kill, nohup, and renice. date,
clock and cal are examples of commands that fall in the Utilities category. The Other category includes
commands that have been recognized but could not be classified under any other category. However, the
Unknown category includes commands that were not identified or script names that are not recognizable.
The Windows taxonomy is discussed in section 5.

3.2. Hellinger Distance

The Hellinger distance computes the change in two frequency tables, each table is a histogram

representing the frequency of some variable at some particular moment in time. Here, we measure the
frequency of command classes from the taxonomy (not the distinct command names) and the changes in
that frequency. The Hellinger distance is defined as:

21

0
)][][([])[],(∑ −

=
−=

n

i yptp ififffHD where fp[] is the array of normalized frequencies for

the first set, ft[] the one for the second set, and n the number of possible commands/ command categories.
This distance metric is applied whenever a user issues a command. A previous frequency table that modeled
the previous commands is compared to a newly updated frequency table by modifying the frequency of the
command types. Hence, each command creates a new Hellinger distance score that is subjected to threshold
logic. Each bin of the frequency table is any chosen category of command extracted from the taxonomy. In
the most general case all command categories would be tracked. The method is efficient to implement, but
it remains to be seen how accurate it may be. Furthermore, the modeling of categories of commands may
significantly reduce the information available when modeling sequences of commands.

3.2 Hellinger Distance Experiment

We use the Schonlau data set presented in section 2, comprised of sequences of 15,000 commands for

50 users. We use the same experimental set up. For each user, there are between 0 and 24 masquerade
blocks. In the first experiment, we apply the Hellinger distance to detect changes in user behavior. It is
important to note that our approach is a one-class modeling approach. No positive examples of masquerade
blocks were used for training, and no non-self models were computed for each user. In order to detect the
changes in user behavior, we compute the Hellinger distance between two blocks of commands of size
w=50. The window size was determined after extensive study of each user’s command blocks and was
found to achieve the best results. With each new command, we count the frequencies of the commands or
command categories within the block of the last w commands. We shift the window of w commands by one
command, and we count the same frequencies for the new block. Then we compute the Hellinger distance
between the two sets of commands.

We also need to determine the threshold used to classify a block as a masquerader block or a normal

user block. For this purpose we have computed the Hellinger distance for the first 5000 commands between
consecutive blocks with a window of 50 commands, shifting the window by 1 command only. We thus
determine the maximum Hellinger distance value for each user. In order to limit the false positive rate, we
scaled the threshold value to 95% of the maximum value for each user model giving a distinct threshold to
each model. Note that no inter-user data is mixed for this process. This constitutes the ‘one-class’ modeling
approach over user command categories, and the method is relatively easy and efficient to implement. (A
fixed size histogram would be maintained for each user at run-time in an operational setting.)

After computing one classifier for each user, the detection task includes computing the Hellinger

distance in the same manner as above, but for the remaining 10,000 commands. The test of self-recognition

 7

is the same as in the Schonlau et al. paradigm, with between 76 and 100 blocks of self data presented to the
detector for each user. Since the masquerader commands have been injected into blocks of 100 commands,
we calculate one value out of all computed Hellinger distances for one block and we compare it with the
classification threshold. Because the Hellinger distance scores are very noisy, we take the average score
over the 100-command block as the overall score. If the average score is above the user threshold, the block
is classified as a masquerader block. We do not use any blocks that have been classified as normal to update
the user profile or recalculate the threshold. Significant improvement may be possible if models are
updated.

The Area Under Curve (AUC), also known as the ROC score, which is a measure of the area under the

ROC curve, reflects the performance of the detection method used. The higher the AUC is, the better the
performance of the method. Figure 2 shows a user-by-user AUC comparison for all users whose files have
been contaminated. Some users had no masquerader blocks injected, and therefore it was not possible to
build a ROC curve for them. Comparing the average AUC for those scores, the taxonomy-based modeling
method achieves more than a 1.8% improvement over the command-based one, with less information. The
taxonomy-based approach outperforms the simple-commands-based approaches in most cases, and it only
underperforms the other approach for very small AUC values.

Figure 2: User-by-user comparison of ROC scores (AUCs).

3.3. One-Class Support Vector Machines

Support Vector Machines (SVMs) are linear classifiers used for classification and regression. They are

known as maximal margin classifiers rather than probabilistic classifiers. Scholkopf et. al. [18] proposed a
way to adapt SVMs to the one-class classification task. The one-class SVM algorithm uses examples from
one class only for training. Just like in multi-class classification tasks, it maps input data into a high-
dimensional feature space using a kernel function, such as the linear, polynomial, or Radial Basis Function
(RBF) kernels. The origin is treated as the only example from other classes. The algorithm then finds the
hyper-plane that provides the maximum margin separating the training data from the origin in an iterative
manner. The kernel function is defined as: k(x,y)=(Φ(x).Φ(y)),where x, y∈X, X is the training data set, and
Φ is the feature mapping to a high-dimensional space X  F.

3.4 SVM Experimental Set-Up

We used the LIBSVM package [19] to conduct our SVM experiments. It supports both multi-class

classification and one-class classification. The one-class SVM function provided by this tool uses the RBF
kernel. We have applied this kernel with the default settings to conduct the experiments. We have created a

AUC Comparison

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

User

A
U

C

hellinger w/ taxonomy hellinger w/o taxonomy

 8

new version of the LIBSVM code, so that the one-class prediction models output the probability that a
vector belongs to the “self” class, rather than output the classification value “self’ or “non-self”. We have
used two different ways to represent features. The first is frequency-based where we count the number of
times a simple command or a command category, retrieved using the command taxonomy, appears in the
data set. The second approach is binary where we indicate whether the command or command category is
present in the data set.

3.4.1 SVM Experiment

In this experiment we follow the methodology described in [1] and [4], and we show that the

performance of one-class SVMs (ocSVM) using command categories per our taxonomy is essentially the
same as the performance of ocSVM that uses simple commands. We use the first 5000 commands of a user
as positives examples for training the model. No negative examples are used for training. Then we test the
classifier using the remaining 10,000 commands of the user, which may have injected command blocks
from other users under a probability distribution described in [2], which we will refer to as the “dirty”
blocks.

Table 2: ocSVM Experimental Results.

Table 2 shows the results achieved by the one-class SVM classifiers. The ocSVMs that use the

command taxonomy achieve better false alarm rates in both cases, when using the frequency-based model
and when using the binary model. With the frequency-based model, the ocSVM using the command
taxonomy also achieves comparable results with the ocSVM using simple commands. This is not true for
the ocSVM using the binary feature. This can be explained by the difficulty to build representative models
for the users based on a binary vector that only has 14 components, since the taxonomy is only made up of
14 different categories, particularly when the training data set includes 5,000 commands. With such a
number of commands, the chances that all 14 categories of commands are represented are relatively high,
and therefore the binary models built for the users will be very similar, i.e. the classifier will be unable to
correctly decide whether a test command block is a self block or a masquerader block.

As mentioned earlier, we have modified the LIBSVM code so that the one-class prediction models

output a probability that a vector belongs to the “self” class, rather than output the classification value “self’
or “non-self”. We have used these prediction values to build ROC curves for each model/user, and we show
the corresponding AUC scores in Figure 3. The AUC scores confirm that, when using the frequency-based
model to build the feature vectors, using the command taxonomy achieves comparable results to those
achieved when modeling simple commands.

Method True Positive (%) False Positive (%)
ocSVM using simple commands (freq.-based model) 98.7 66.47

ocSVM using taxonomy (freq.-based model) 94.8 60.68

ocSVM using simple commands (binary model) 99.13 66.8

ocSVM using taxonomy binary model 86.58 56.9

 9

Figure 3: Comparison of AUC scores achieved using the 4 models in the SVM experiment.

3.5 Discussion of the Schonlau data experiment

 Unlike a modeling approach based on frequencies of simple commands, the taxonomy-based approach

should not raise an alarm for a masquerader if, for instance, the same legitimate user starts running a
different C compiler than what he/she normally uses. Both compilers used should be under the Applications
category. So if the user continues doing the same things he has been doing before, except for the change of
compilers, the user model does not change if we use our taxonomy-based approach. However, using the
simple commands approach might raise an alarm for a masquerade. Therefore, our approach is expected to
limit the occurrences of false positives. Moreover, the taxonomy-based approach tends to reduce the
problem of modeling “Never-Before-Seen-Commands” since any command is likely to be placed in a
category with other similar commands, i.e., although a specific command may never have been observed,
members of its class probably were.

The results shown above confirm that the information that is lost by compressing the different user shell

commands into a few categories does not affect the masquerader detection ability significantly. In order to
further test this approach, we gathered simulated masquerader data by conducting a user study under IRB
approval that will be described in the next section. This is a crucial step: The Schonlau datasets are not “true
Masquerader” data sets. The data from different users were randomly mixed standing as a simulation of a
masquerader attack. A willful act of malfeasance after identity theft is yet to be tested, albeit there is no
generally available data set of this nature for scientific study. Hence, Schonlau resorted to simulating this
malfeasance in as simple a fashion as possible, monitoring different users and mixing their data. It is fair to
say, this mixture does NOT represent true malfeasance and willful intent.

In the next section, we describe the data that we have gathered, which we refer to as the RUU (Are You

You?) dataset. The methodology and results described in the next section cannot be applied to the Schonlau
datasets. The data captured lacks timestamps associated with the user commands. Hence, the modeling we
propose that includes rates of emitted user events cannot be applied to the Schonlau datasets. As we shall
see, the results achieved are far better with this different approach to modeling user behavior.

4 Data Gathering and “Capture The Flag” Exercise

 In order to evaluate the search-behavior modeling approach, we needed to gather data, both normal

user data and simulated masquerader data. But first, we had to develop host sensors that could audit user
activity and capture the data that we were interested in.

4.1 Host Sensors

AUC Comparison

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 3 4 7 9 10 12 15 16 18 23 24 25 26 28 29 30 34 35 36 37 38 41 42 43 44 45 46 48

User

Bernoulli w/o Taxonomy Bernoulli with Taxonomy

Freq.-based w/o Taxonomy Freq.-based with Taxonomy

 10

Two host sensors were developed: one for Windows and one for Linux. The Windows sensor

monitored all registry-based activity, process creation and destruction, window GUI access, and DLL
libraries activity. The data gathered consisted of the process name and ID, the process path, the parent of the
process, the type of process action (e.g., type of registry access, process creation, process destruction, etc.),
the process command arguments, action flags (success/failure), and registry activity results. A timestamp
was also recorded for each action. The Windows sensor uses a low-level system driver, DLL registration
mechanisms, and a system table hook to monitor activity. The Linux sensor used a kernel hook to audit all
events on the host. It collected all process IDs, process names, and process command arguments in real
time. The hooking mechanism used is the auditd daemon included in most modern Linux distributions.

4.2 RUU Dataset

Thirty four computer science students installed the Windows host sensor on their personal computers.

The host sensor collected the data described in the previous subsection and uploaded it to a server, after the
students had the chance to filter any data that they were not willing to share. The students signed an
agreement for sharing their data with the research community. The dataset with a size of more than
8GBytes is available for download. The data collected for each student was an average of 5 days worth of
normal user data, ranging between 1 day and 59 days, and an average of more than 1 million records per
user.

To obtain masquerader data, we developed a “capture the flag” exercise in our lab with user volunteers

acting as masqueraders. 14 computer science students participated in the exercise, where they had unlimited
access to the same file system for 15 minutes each. None of the users had access to this file system before,
which was designed to look very realistic and to include potentially interesting patent applications,
personally identifiable information, as well as account credentials. The students were handed a scenario
where they were asked to perform a specific task, which consisted of finding any data on the file system
that could be used for financial gain. The scenario clearly described the financial difficulties that the user
was going through and the personal problems they were having with the computer’s owner, a co-worker; In
particular, they believed that their co-worker had been undeservingly promoted instead of them, making any
PII information theft or the cause of financial damage to their colleague, that they might engage into,
justifiable to them. The task was goal-specific in order to capture the intent of the users. After completing
the task, the participants filled a questionnaire about their experience and behavior during the task, and how
different it was from their normal search behavior.

5 RUU Experiment

5.1 Modeling

A similar taxonomy to the user command taxonomy described in Section 3.1 was developed for

Windows applications and DLLs. The taxonomy displayed in Figure 1 was particularly focused on
categorizing search and information gathering applications, as well as document editing applications.

The data was grouped into 10 second quanta, and a total of 7 features were extracted for each of those

epochs. Five of the features were only dependent on the events and data within the 10 second period:

1) Number of search actions: Specific sections of the Windows registry, specific DLL's, and
specific programs on the system are correlated with system searching. For the 10 second
time, we model all search actions of a user.

2) Number of non-search actions

 11

3) Number of user-induced actions: e.g. manually starting or killing a process, opening a
window, manually, searching for some file or some content, etc. These actions are
distinguished from the ones that are automatically induced by running processes (e.g. a
process performs a fork, etc.).

4) Number of window touches: e.g. bringing a window into the foreground, or closing a
window, etc.

5) Number of new processes

The other 2 features qualified the general context that the user actions were performed in. These are as
follows.

6) The total number of processes running on the system, and
7) The total number of document editing applications running on the system

 5.2 Experimental Methodology

For each of the 34 normal users, the first 75% of their data was used for training a one-class SVM

model. The data was first normalized to [0,1] using LIBSVM’s scaling routine, which allows for saving the
scale extracted from the training data to a file. That scale is then used for normalizing the test data of the
same user as well as the masquerader data, by feeding the scale file to the scaling routine. Scaling prevents
features with wide numeric ranges from dominating those with narrow ranges. The user’s test data and the
masquerader data were kept separate.

Two experiments were conducted to determine the value that may arise from using context features.

Context features intend to represent information about prior user events. In the first experiment, only the
first 5 features, measuring events for the current 10 second epoch are used for modeling, whereas in the
second experiment, all 7 features were used for modeling. The goal was to learn how important the overall
context of the session was in detecting masquerade attacks.

After the baseline models were computed, the same features used in the model were extracted for the
test data after dividing them into 10 second quanta. The models were tested against these features, and a
threshold was used to determine whether the user activity during the 10 second period was normal or
abnormal. If the user activity was performed by the normal user, but was classified as abnormal by the
ocSVM model, a false positive is recorded.

5.3 Evaluation of Experiment 1

86.24% of the 10-second quanta that included masquerader activity were detected as abnormal, while

12.58% of the ones with legitimate user activity were flagged as not confirming to the user’s normal
behavior. The results achieved are displayed in Table 3. The average AUC score for all ROC curves was
0.75. Figure 4 depicts the number of ROC curves having AUC scores higher than a certain value. The
detection rate improves by at least 13.77% over the best detection rate reported in the literature and
described in section 2. The false positive rate is still high, however. In experiment 2 in the next subsection,
we show how these results can be further improved by including features that add context to the
user/masquerade activity.

 12

Figure 4: The number of user models greater with ROC scores than the value displayed on the x-axis.

(The first point shows 33 user models with AUC scores greater than 0.5).

5.4 Evaluation of Experiment 2

In this experiment, we achieved a 100% detection rate with a very low false positive rate of 0.1%, and

an average AUC score of 0.996. The results are summarized in Table 3. Figure 5 shows the total number of
user models in relation to their AUC scores. These results substantially outperform the results reported in
the literature so far. However, it should be noted, that they should only be applied to a masquerade attack
where the masquerader logs in to the victim’s computer and starts a new session, since the masquerade data
in our experimental setup was kept separate from the normal user’s test data, while 2 of the features,
describing the context of the session, were used for modeling.

The FP rate of 0.1% for the model that checks every 10 seconds translates into more than 60 false

positives per week. If only one alert is issued for an instance of 3 consecutive sequences of false positives
over the consecutive 10 second time quanta, the number of false positives drops to 21.4. Figure 6 shows
how the number of false positives decreases by changing the model check frequency. More training data
and modeling of different epochs could improve these results.

Table 3: Experimental Results of ocSVM modeling search-behavior.

In an operational monitoring system, one would be concerned with the error rate of a detector. The

downside of a false positive is essentially annoyance by a legitimate user who may be alerted too
frequently. An interesting problem to study is how to calibrate the modeling and detection frequency to
balance the detector’s false positive rate while ensuring its false negative rate is minimized. False negatives
in this context, i.e., an undetected masquerader, are far more dangerous than an annoying false positive. A
thorough evaluation of the right model checking and alerting frequency in light of average search times on a
file system inter alia is the subject of ongoing research. Another focus of our ongoing research is the
correlation of search behavior anomaly detection with trap-based decoy files such as [15]. This should
provide stronger evidence of malfeasance, and therefore improve the detector’s accuracy. Not only would a
masquerader not know the file system, they would also not know the detailed contents of that file system

0

5

10

15

20

25

30

35

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

N
um

be
r o

f U
se

rs

AUC

Number of Users with AUC > certain AUC value

Method True Positive (%) False Positive (%)
Experiment 1: ocSVM without context features 86.24 12.58

Experiment 2: ocSVM with context features 100 0.1

 13

especially if there are well placed traps that they cannot avoid. We conjecture that detecting abnormal
search operations performed prior to an unsuspecting user opening a decoy file will corroborate our
suspicion that the user is indeed impersonating another victim user. Furthermore, an accidental opening of a
decoy file by a legitimate user might be recognized as an accident if the search behavior is not deemed
abnormal. In other words, detecting abnormal search and decoy traps together may make a very effective
masquerade detection system. Ongoing work should establish evidence to corroborate this conjecture.

Figure 5: The number of users with AUC > certain AUC value.

Figure 6: The number of false positives by week. More training time improves accuracy.

In order to accurately compare our results with prior results for the Schonlau datasets, we need to

translate the false positives rates reported in terms of blocks of commands into false positives per unit of
time. It is important to note that the prior methods that used the Scholauu dataset were focused on
classifying a whole block of 100 commands as a legitimate block or a masquerader block. Since the
Schonlau data set does not include timestamps, no one can accurately determine how long it takes to issue
100 commands on average from these datasets.

If we assume a user can issue a command once every 20 seconds, then a 100 command block would

occur about every half hour. The best FP rate of 1.3% reported in literature of so far implies that the
probability of a false positive every 100 commands, or every half hour is equal to 0.013. For the same
timeframe, i.e. half hour, our approach, which makes classifications every 10 seconds, outputs a total of
30*6=180 predictions. If we deem the epoch of 30 minutes as abnormal only if the percentage of 10-

26
27
28
29
30
31
32
33
34

0.
93

5

0.
94

0.
94

5

0.
95

0.
95

5

0.
96

0.
96

5

0.
97

0.
97

5

0.
98

0.
98

5

0.
99

0.
99

5 1

N
um

be
r o

f U
se

rs

AUC

Number of Users with AUC > certain AUC value

0

20

40

60

80

10 sec 30 sec 60 sec 120 sec 300 sec

Number of False Positives per Week by Model Check
Frequency

 14

seconds epochs classified as abnormal exceeds a certain threshold th, say 50%, that is at least 90 epochs are
abnormal, then the FP rate drops to

()
r

r

r

r
rP

−

=

∑ 







=≥

180
180

90

)999.0(*001.0*
180

)90(= 8.325761016995151e-218

where r is the number of 10-second epochs classified as abnormal. This is an order of magnitude
improvement over the best reported result of 0.013. However, this reduces the sensitivity of our detector to
abnormal behavior.

If we drop the threshold th of 10-second epochs required to classify the 30 minute epoch as abnormal to
1%, i.e. 2 abnormal 10-second epochs are enough to classify the whole 30-min epoch as abnormal, the FP
rate would still be very low and equal to 1.4%. With such a threshold, masquerade activity can only be
missed if it lasts for less than 20 seconds. If we are to apply this to the Schonlau dataset, and using the
above assumption of one user command issued every 20 seconds, we can only miss detecting a
masqueraders if only 1 command in the 100 command block is issued by a masquerader. Since the
masquerader blocks in the Schonlau data set were composed only of commands issued by masqueraders,
our approach would then detect 100% of all masquerader blocks.

6 Discussion and concluding remarks

Masquerade attacks (such as identity theft and fraud) are a serious computer security problem. We

conjectured that that can be detected by user search behavior profiling techniques, rather than prior work
that modeled user commands. The use of search behavior profiling for masquerade attack detection permits
limiting the range and scope of the profiles we compute about a user, thus limiting potentially large sources
of error in predicting user behavior that would be likely in a far more general setting. Prior work modeling
user commands shows very high false positive rates with moderate true positive rates.

In this paper, we presented a modeling approach that aims to capture the intent of a user more

accurately based on the insight that a masquerader is likely to perform untargeted, and widespread search.
We model search behavior of the legitimate user, and detect anomalies that deviate from that normal search
behavior. We introduced a taxonomy of Unix commands and Windows applications in conjunction with
one-class SVM modeling of user behavior in order to detect masqueraders in UNIX environments using a
standard benchmark dataset, and in Windows environments using our own dataset. With the use of the latter
RUU dataset, a more suitable dataset for the masquerade detection problem, we achieved the best results
reported in literature to date: 100% masquerade detection rate with only 1.4% of false positives. This is
partially due to incorporating temporal context via volumetric statistics in the modeling of user events.
Other researchers are encouraged to use the data set we have made publicly available at a website that will
be revealed in the camera ready version.

In an operational monitoring system, the use of a small set of features limits the system resources

needed by the detector, and allows for real-time masquerade attack detection. Furthermore, it can be easily
deployed as profiling in a low-dimensional space reduces the amount of sampling required: An average of
less than 5 days of training data was enough to train the models and build effective detectors.

 In our ongoing work, we are exploring other features for modeling that could improve our results

and extend them to all masquerade attack scenarios including the case where masquerader activity happens
within a legitimate user’s session. The models can be refined by adding more features related to search,
including search query contents. The models reported here are primarily volumetric statistics characterizing
search volume and velocity. We can also update the models in order to compensate for any user behavior
changes, known as concept drift. We will explore ways of improving the models so that they reflect a user’s

 15

unique behavior that should be distinguishable from other legitimate user’s behaviors, and not just from the
behavior of masqueraders.

References

[1] M. Schonlau, W. DuMouchel, W.-H Ju, A. F. Karr, M. Theus, and Y. Vardi, “Computer Intrusion:
Detecting Masquerades”, Statistical Science, 16(1):58-74, Feb. 2001.

[2] http://www.schonlau.net.
[3] R. A. Maxion and T. N. Townsend, “Masquerade Detection Using Truncated Command Lines”,

International Conference on Dependable Systems & Networks (DSN-02), pp. 219-228, Washington
D.C., June 2002.

[4] K. Wang and S. J. Stolfo, “One-Class Training for Masquerade Detection”, 3rd IEEE Workshop on
Data Mining for Computer Security, Nov. 2003.

[5] B. D. Davison, and H. Hirsh, “Predicting Sequences of User Actions”, Working Notes of the Joint
Workshop on Predicting the Future: AI Approaches to Time Series Analysis, Fifteenth National
Conference on Artificial Intelligence (AAAI98)/Fifteenth International Conference on Machine
Learning (ICML98), AAAI Press, 1998.

[6] T. Lane and C. Brodley, “Sequence Matching and Learning in Anomaly Detection for Computer
Security”, Proceedings of the AAAI-97 Workshop on AI Approaches to Fraud Detection and Risk
Management, pp. 43-49, 1997.

[7] R. A. Maxion and T. N. Townsend, “Masquerade Detection Augmented with Error Analysis”, IEEE
Transactions on Reliability, Vol. 53, No. 1, March 2004.

[8] R. A. Maxion, “Masquerade Detection Using Enriched Command Lines”, International Conference on
Dependable Systems & Networks (DSN-03), pp. 5-14, San Francisco, California, June 2003. IEEE
Computer Society Press, 2003.

[9] K. S. Killourhy, and R. A. Maxion, “Investigating a Possible Flaw in a Masquerade Detection System”,
Technical Report, School of Computing Science, Newcastle University, CS-TR No 869, Nov 2004.

[10] B.K. Szymanski and Y. Zhang, “Recursive Data Mining for Masquerade Detection and Author
Identification”, 2004 Information Assurance Workshop, Proceedings of the 5th annual IEEE conference
on Systems, Man and Cybernetics, 2004.

[11] S. Coull, J. Branch, B. Szymanski, and E. Breimer, “Intrusion Detection: A Bioinformatics Approach”,
Proceedings of the 19th Annual Computer Security Applications Conference, 2003.

[12] K. H. Yung, “Using Self-Consistent Naïve-Bayes to Detect Masqueraders”, PAKDD 2004, pp 329-
340.

[13] M. Oka, Y. Oyama, and K. Kato, “Eigen Co-occurrence Matrix Method for Masquerade Detection”,
Publications of the Japan Society for Software Science and Technology, 2004.

[14] M. Oka, Y. Oyama, H. Abe, and K. Kato, “Anomaly Detection Using Layered Networks Based on
Eigen Co-occurrence Matrix”, Proceedings of the 7th International Symposium on Recent Advances in
Intrusion Detection, 2004.

[15] B. M. Bowen, S. Hershkop, A. D. Keromytis, and S. J. Stolfo, “Baiting Inside Attackers using decoy
Documents”, Columbia University Department of Computer Science, Technical Report CUCS-016-09,
2009.

[16] B. D. Davison and H. Hirsh, “Toward An Adaptive Command Line Interface”,
Proceedings of the Seventh International Conference on Human-Computer Interaction (HCI97),
Elsevier Science Publishers, 1997.

[17] H. S. Teng, K. Chen, and S. C-Y Lu, “Adaptive real-time anomaly detection using inductively
generated sequential patterns”, Proceedings of the 1990 IEEE Symposium on Security and Privacy,
1990.

[18] B. Scholkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson, “Estimating the support
of a high-dimensional distribution”, Technical Report, Microsoft Research, MSR-TR-99-87, 1999.

 16

[19] http://www.csie.ntu.edu.tw/~cjlin/libsvm/
[20] D. D. Caputo, G. Stephens, B. Stephenson, M. Cormier, and M. Kim, “An Empirical Approach to

Identify Information Misuse by Insiders”, International Symposium on Recent Advances in Intrusion
Detection, 2008.

[21] M. A. Maloof, and G. D. Stephens, “ELICIT: A System for Detecting Insiders Who Violate Need-to-
Know”, International Symposium on Recent Advances in Intrusion Detection, 2008.

