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Mechanics and Quasi-Static Manipulation of Planar
Elastic Kinematic Chains

Timothy Bretl, Member, IEEE, and Zoe McCarthy, Student Member, IEEE

Abstract—In this paper, we study quasi-static manipulation of
a planar kinematic chain with a fixed base in which each joint is
a linearly elastic torsional spring. The shape of this chain when in
static equilibrium can be represented as the solution to a discrete-
time optimal control problem, with boundary conditions that vary
with the position and orientation of the last link. We prove that
the set of all solutions to this problem is a smooth three-manifold
that can be parameterized by a single chart. Empirical results in
simulation show that straight-line paths in this chart are uniformly
more likely to be feasible (as a function of distance) than straight-
line paths in the space of boundary conditions. These results, which
are consistent with an analysis of visibility properties, suggest that
the chart we derive is a better choice of space in which to apply a
sampling-based algorithm for manipulation planning. We describe
such an algorithm and show that it is easy to implement.

Index Terms—Deformable objects, manipulation planning,
motion and path planning, optimal control.

I. INTRODUCTION

CONSIDER a serial kinematic chain that moves in a planar
workspace and that has a fixed base. Assume that each

joint in this chain is a linearly elastic torsional spring and that
the last link is held by a robotic gripper. The problem we address
is to find a path of the gripper that causes the chain to move
between given start and goal configurations, while remaining
in static equilibrium and avoiding collision. This problem is a
simple example of quasi-static manipulation planning in which
the object to be manipulated is deformable.

What makes this problem seem hard is the apparent lack of
coordinates to describe equilibrium configurations, i.e., con-
figurations of the chain that would be in static equilibrium
if the last link were held fixed by the gripper. The set of all
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equilibrium configurations has lower dimension than the con-
figuration space of the chain; therefore, elements of this set
cannot be found by rejection sampling. In addition, there are
a countably infinite number of equilibrium configurations that
correspond to a given placement of the gripper, none of which
can be computed in closed form. For this reason, most of the
literature on similar problems (see Section II) would suggest
exploring the set of equilibrium configurations indirectly, by
sampling placements of the gripper and using numerical sim-
ulation to find their effect on the chain. This approach was
developed at length in the seminal work of Lamiraux and
Kavraki [1], and was later applied by Moll and Kavraki [2]
for the manipulation of elastic “deformable linear objects” like
flexible wire, which can be viewed as a continuous analog of
the chain we consider here. Our own work is really a direct
extension of [2], where we look at a simpler finite-dimensional
object (the chain) in order to develop the basis for an alternative
approach.

Our contribution in this paper is to prove that the set of equi-
librium configurations for a planar elastic kinematic chain is, in
fact, a smooth manifold that can be parameterized explicitly by
a single chart (see Section III). In other words, we will produce
a finite set of coordinates that suffice to describe all possible
configurations of the chain that can be achieved by quasi-static
manipulation. The key idea is to express equilibrium configura-
tions as local optima of a discrete-time optimal control problem.
Rather than trying to compute solutions to this problem for given
boundary conditions, we ask what must be satisfied by solutions
to this problem for any boundary conditions. The coordinates
we need are provided by costates that arise in necessary and
sufficient conditions for optimality. Quasi-static manipulation
planning becomes very easy if we work in the chart defined by
these coordinates.

To justify this claim, we consider the benefits of applying a
sampling-based planning algorithm in the chart we derive rather
than in the space of boundary conditions (see Section IV). One
benefit is related to the sampling strategy. Points in the chart we
derive uniquely specify equilibrium configurations of the chain,
which can be computed by evaluating a set of finite difference
equations. Points in the space of boundary conditions do not
uniquely specify equilibrium configurations—these depend on
the entire path taken by the gripper and must be computed by
solving a nonconvex optimization problem (e.g., using gradi-
ent descent). Another benefit is related to the local connection
strategy. Empirical results in simulation show that straight-line
paths in the chart we derive are uniformly more likely to be
feasible (as a function of distance) than straight-line paths in the
space of boundary conditions. These results are consistent with

1552-3098/$31.00 © 2012 IEEE



2 IEEE TRANSACTIONS ON ROBOTICS, VOL. 29, NO. 1, FEBRUARY 2013

an analysis suggesting that the chart we derive has favorable
visibility properties.

We are motivated in part by the wide variety of applica-
tions that require manipulation of deformable objects. Knot
tying has been a particular focus of the robotics commu-
nity because of its relevance to surgical suturing [3]–[8], but
other applications of interest include cable routing [9], folding
clothes [10]–[12], robotic origami [13], assembly of flexible
circuit boards [14], surgical retraction of tissue [15], compliant
parts handling [16]–[18], and the closely related fields of protein
folding and geometric analysis of molecular motion [19]–[22].
We do not believe that a planar elastic kinematic chain is a good
model of any “real-world” object found in these applications.
We use it only to illustrate a new approach to manipulation
planning. Our ongoing work suggests that this approach may
generalize (see Section V).

We are also motivated by the link, which was pointed out
by Tanner [23], between manipulation of deformable objects
and control of hyper-redundant [24] and continuum [25]–[29]
robots. These robots typically have many more degrees of free-
dom than are required to accomplish a given task. One approach
to kinematic redundancy resolution is to choose a cost function
and to restrict motion to the set of configurations that are locally
optimal with respect to this cost function [30]. The robot then
becomes a “deformable object” that is controlled by specify-
ing the position and orientation of its end-effector. Our results
show that it may be possible to parameterize the resulting set of
locally optimal configurations. The coordinates we provide are
an alternative to working either in the task space [31], [32] or
in the space of modal shapes derived from a heuristic choice of
basis functions [33]. Similar ideas have been applied to dynamic
redundancy resolution [34], [35], and are related to the concept
of operational space control [36].

The rest of this paper proceeds as follows. Section II gives an
overview of related work. Our main result appears in Section III,
where we characterize the set of equilibrium configurations for
a planar elastic kinematic chain. We apply this result to ma-
nipulation planning in Section IV. We conclude with a brief
discussion of future work in Section V, leaving proofs to the
Appendix.

A preliminary version of this paper has appeared at a con-
ference [37]. Two extensions are provided here, both related to
the sampling-based algorithm used for manipulation planning
in Section IV. First, we justify our choice of sampling strategy
by giving a physical interpretation of the chart we derive (see
Section III-B). Second, we justify our choice of local connection
strategy with empirical results in simulation (see Section IV-B).

II. RELATED WORK

There are two main approaches to manipulation planning for
“deformable linear objects” like the chain we consider here: one
that relies primarily on numerical simulation and another that
uses task-based decomposition.

The first approach is exemplified by Moll and Kavraki [2],
who provide a sampling-based planning algorithm for quasi-
static manipulation of an inextensible elastic rod—as might be

used to model a flexible wire or surgical thread—by robotic
grippers in a 3-D workspace. Any framed curve traced by this
rod when in static equilibrium is one that locally minimizes
total elastic energy, which is defined as the integral of squared
curvature plus squared torsion along the rod’s entire length. The
algorithm proceeds by sampling placements of each gripper and
by using numerical methods to find minimal-energy curves that
satisfy these boundary conditions. It measures distance between
curves by the integral of the sum-squared difference in curvature
and torsion, and connects nearby curves by spherical interpola-
tion of gripper placement (i.e., by a local path in the space of
boundary conditions), again using numerical methods to find the
resulting path of the rod. The efficacy of this approach clearly
derives from the choice of numerical methods. In [2], minimal-
energy curves are approximated by recursive subdivision. Many
other methods have been proposed (finite element, finite differ-
ence, etc.) that we will not mention here, since they are used for
planning in much the same way. Current state of the art is per-
haps the discrete geometric model of Bergou et al. [38], which
has recently found application in robotics [39].

The second approach is exemplified by the work of
Wakamatsu et al. [5] and of Saha and Isto [6] on knot tying
with rope. Knot tying is an example of a manipulation task in
which the goal is topological rather than geometric. It does not
matter exactly what curve is traced by the rope, only that this
curve has the correct sequence of crossings. Motion primitives
can be designed to ensure that crossing operations are realiz-
able by robotic grippers—in [5], these primitives rely on the
rope being placed on a table and immobilized by gravity, while
in [6], these primitives rely on fixtures (referred to as “needles”
by analogy to knitting). This approach has been generalized to
folding paper by Balkcom and Mason [13] and to folding clothes
by van den Berg et al. [11]. “Crossings” are replaced by “folds,”
again realized either by relying on fixtures or on immobilization
by gravity.

Like the first approach, we consider a geometric goal in this
paper and model equilibrium configurations as local minima of
total elastic energy. However, instead of relying on numerical
simulation, we will derive coordinates that explicitly describe
the set of all possible equilibrium configurations for our object
of interest, a planar elastic kinematic chain. This result will
allow us to plan a path of the chain through its set of equi-
librium configurations—like the second approach—rather than
plan indirectly by sampling placements of each gripper.

We have also been strongly influenced by prior analysis
of the Kirchhoff elastic rod using calculus of variations and
optimal control. This analysis has been done both from a
Lagrangian [40], [41] and a Hamiltonian [42]–[46] perspec-
tive. It has led in some cases to global descriptions of extremal
solutions (often called “solution manifolds”) similar to what we
derive in this paper. For example, Ivey and Singer [47] show
that closed and quasiperiodic extremals of uniform, isotropic,
linearly elastic rods are parameterized by a 2-D disk. Similarly,
Neukirch and Henderson classify extremals of elastic rods with
clamped boundary conditions [48] and apply numerical con-
tinuation to explicitly compute the set of all such extremals
[49]. None of this work has been applied yet to manipulation



BRETL AND MCCARTHY: MECHANICS AND QUASI-STATIC MANIPULATION OF PLANAR ELASTIC KINEMATIC CHAINS 3

planning—Camarillo et al. [27] and Rucker et al. [28] are clos-
est to making this link, in the context of continuum robots (e.g.,
tendon-driven or concentric tube).

In this discussion, we have omitted previous work that is
not directly related to what we propose (e.g., fair curves and
minimal-energy splines in computer graphics). See [2] or [50]
for a broader overview. We emphasize that the planar elastic
kinematic chain should not be viewed as a competing model to
what appears in this other work. We chose it to illustrate our ap-
proach to manipulation planning because, as we will show in the
following section, equilibrium configurations can be described
as local optima of a discrete-time optimal control problem (as
opposed to continuous-time)—this property allows us to rely on
well-known necessary and sufficient conditions for optimality.
Our approach has recently been extended to the Kirchhoff elas-
tic rod [51], [52], and we hope it will further generalize to other
continuous models like the Cosserat rod [53], which handles
large deformation and allows both extension and shear.

III. MECHANICS

In Section III-A, we fix notation and express equilibrium con-
figurations of a planar elastic kinematic chain as local optima
of a discrete-time optimal control problem. In Section III-B, we
show that the set of configurations satisfying necessary condi-
tions for local optimality is a smooth three-manifold that can be
parameterized by a single chart (see Theorem 2), the coordinates
of which have a simple interpretation as forces and torques. In
Section III-C, we show that the set of configurations satisfying
sufficient conditions for local optimality is an open subset of this
manifold, and we provide an algorithm to test membership in
this subset (see Theorem 4). Finally, in Section III-D, we define
a “straight-line path” in both the manifold we derive and in the
space of boundary conditions—this result is the basis for the
local connection strategies we use for manipulation planning in
Section IV.

A. Model

The kinematic chain in Fig. 1 moves in a planar workspace
W = R2 . It has n revolute joints, where we assume n > 3. We
index joints by i ∈ {0, . . . , n − 1}. The angle of each joint i
is u(i) ∈ R. We denote the entire sequence of joint angles by
the function u : {0, . . . , n − 1} → R. We call the space of all
possible u the joint space and identify it in the obvious way
with Q = Rn . The chain has n + 1 rigid links that we index
by i = {0, . . . , n}. We attach a coordinate frame to each link
1, . . . , n so that the axis of joint i − 1 passes through the origin
of frame i. We attach a coordinate frame to link 0 so that the
origin of frames 0 and 1 coincide. We describe the position and
orientation of frame i relative to frame 0 by the homogenous
transformation matrix

⎡
⎢⎣

cos x3(i) − sin x3(i) x1(i)
sinx3(i) cos x3(i) x2(i)

0 0 1

⎤
⎥⎦ ∈ SE(2)

Fig. 1. Planar kinematic chain with n joints and n + 1 rigid links that is held
at each end by a robotic gripper. Each joint is a linearly elastic torsional spring.
For a fixed position and orientation of each gripper, the chain relaxes to a shape
that locally minimizes the energy in all n joints.

for some x(i) ∈ R3 . Henceforth, we refer only to x(i) and
not to the element of SE(2) to which x(i) corresponds. This
choice is for convenience and will cause no problems. It can
be viewed as working in the chart R2 × (x3(i) − π, x3(i) + π],
where equality in x3(i) is taken modulo 2π. We call x(i) the state
and call X = R3 the state space. We specify x(i) recursively
with the finite difference equation

x(i + 1) = x(i) +

⎡
⎢⎣

ri cos x3(i)
ri sinx3(i)

u(i)

⎤
⎥⎦ (1)

for i ∈ {0, . . . , n − 1}, where for convenience we choose

ri =
{

0, if i = 0
(n − 1)−1 , otherwise

so that the total length is 1. We denote the state trajectory by
x : {0, . . . , n} → X . Each end of the kinematic chain is held by
a robotic gripper. We ignore the structure of these grippers, and
simply assume that they fix arbitrary values of x(0) and x(n).
We further assume, without loss of generality, that x(0) = 0.
We call the space of all possible x(n) the task space and denote
it by B ⊂ R3 . Again, the reader should think of each b ∈ B as
belonging to a chart of SE(2), where equality in b3 is taken
modulo 2π.

Finally, we assume that each joint i in the kinematic chain is a
linearly elastic torsional spring with unit modulus and, therefore,
has potential energy u(i)2/2. For fixed endpoints, the chain will



4 IEEE TRANSACTIONS ON ROBOTICS, VOL. 29, NO. 1, FEBRUARY 2013

remain motionless only if its shape locally minimizes the total
energy in all n joints. In particular, we say that (u, x) is in static
equilibrium if it is a locally optimal solution to

minimize
u ∈ Q

x (0) , . . . , x (n ) ∈ X

1
2

n−1∑
i=0

u(i)2

subject to x(i + 1) = x(i) +

⎡
⎢⎣

ri cos x3(i)
ri sinx3(i)

u(i)

⎤
⎥⎦

for all i ∈ {0, . . . , n − 1}
x(0) = 0

x(n) = b (2)

for some b ∈ B. We note that, in this discrete-time optimal
control problem, the “time step” i is used to index joints.

For quasi-static manipulation, we will require that (u, x) is
nonsingular as well as in static equilibrium. The reason for this
requirement is that singularities will turn out to be configurations
at which there is ambiguity in how the chain responds to motion
of each gripper. We will treat this requirement as an assumption
in Section III-B and will make it precise in Section III-C (as
Theorem 5). Note that (u, x) is nonsingular if and only if it is
regular with respect to the constraints in (2), since these con-
straints are exactly the forward kinematic relations. Following
the literature on equality-constrained minimization [54], we will
use the term “regular” in our analysis of (2).

B. Necessary Conditions for Static Equilibrium

The following theorem is an application of first-order nec-
essary conditions for equality-constrained minimization to the
problem (2), similar to [55, Ch. 2.6].

Theorem 1: If (u, x) is both regular and a local optimum of
(2), then there exists a costate trajectory

p : {0, . . . , n} → R3

that satisfies

p(i)T = ∇x(i)H (x(i), p(i + 1), u(i)) (3)

0 = ∇u(i)H (x(i), p(i + 1), u(i)) (4)

for all i ∈ {0, . . . , n − 1}, where

H (x(i), p(i + 1), u(i)) =
1
2
u(i)2

+ p1(i + 1) (x1(i) + ri cos x3(i))

+ p2(i + 1) (x2(i) + ri sinx3(i))

+ p3(i + 1) (x3(i) + u(i))

is the Hamiltonian function.
Proof: See [54, Ch. 11.3]. �
Theorem 1 provides a set of candidates for local optimality

of (2), which we will proceed to characterize. Let

C ⊂ Rn ×R3(n+1)

be the set of all regular (u, x) for which there exists p satisfying
(3) and (4). We will show that C is a smooth three-manifold. In
particular, (3) and (4) require that

p(i)T = p(i + 1)T Ji

u(i) = −p(i + 1)T e3

for i ∈ {0, . . . , n − 1}, where

Ji =

⎡
⎢⎣

1 0 −ri sinx3(i)
0 1 ri cos x3(i)
0 0 1

⎤
⎥⎦ and e3 =

⎡
⎢⎣

0
0
1

⎤
⎥⎦ .

The inverse

J−1
i =

⎡
⎢⎣

1 0 ri sin x3(i)
0 1 −ri cos x3(i)
0 0 1

⎤
⎥⎦

exists everywhere. Hence, (u, x) and p are related by the finite
difference equations

u(i) = −p(i)T J−1
i e3

x(i + 1) = x(i) +

⎡
⎢⎣

ri cos x3(i)
ri sinx3(i)

u(i)

⎤
⎥⎦

p(i + 1) = (J−1
i )T p(i) (5)

for i ∈ {0, . . . , n − 1}. Recalling that x(0) = 0, we see that (5)
is completely defined by the choice of p(0). For a ∈ R3 , let
p(0) = a, and compute (u, x) and p according to (5). Denote
the resulting map by

Ψ(a) = (u, x) (6)

Γ(a) = p. (7)

By construction, Ψ(a) and Γ(a) satisfy (3) and (4) for all a ∈
R3 . However, Ψ(a) is regular only for certain choices of a. In
particular, define

A = R3 \ S
where

S =

⎧
⎪⎨
⎪⎩

⎡
⎢⎣

h

k(n − 1)π

lπ

⎤
⎥⎦ ∈ R3 : h ∈ R and k, l ∈ Z

⎫
⎪⎬
⎪⎭

.

We show in Appendix B that Ψ(a) is regular if and only if a ∈ A
(see Lemma 7). This result implies that Ψ : A → C is a homeo-
morphism (see Lemma 9), and allows us to draw the following
conclusion.

Theorem 2: C is a smooth three-manifold with smooth struc-
ture that is determined by an atlas with the single chart (C,Ψ−1).

Proof: Since Ψ is a homeomorphism by Lemma 9 (see
Appendix B) and A ⊂ R3 is open, then (C,Ψ−1) is a chart
whose domain covers C. Our result is an immediate consequence
of Lemma 3 (see Appendix A). �

As a corollary, we know that A is also a smooth three-
manifold and that Ψ : A → C is, in fact, a diffeomorphism.
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Fig. 2. Forces and torques applied to link i of the planar elastic kinematic
chain, providing a physical interpretation of the costate trajectory.

We emphasize that the dimensionality of A does not increase
with the number of joints n. We find this result somewhat re-
markable, because it means that the complexity of manipulation
planning (see Section IV) does not scale as it normally would.
In hindsight, there are two reasons why we might have expected
this result. First, since any quasi-static motion of the chain is
caused by motion of the gripper, and since the configuration of
the gripper lives in SE(2), we conclude that the set of equi-
librium configurations must—at least locally—have dimension
three. Second, the principle of virtual work [56] requires satis-
faction of

J(θ)T f = −θ (8)

in static equilibrium, where

θ = [u(0) · · · u(n − 1) ]T ∈ Rn

is the vector of joint angles, J(θ) ∈ R3×n is the manipulator
Jacobian, and f ∈ R3 is the force and torque applied by the
gripper on link n. The implicit function theorem tells us that
nonsingular solutions to (8) are locally parameterized by f ,
which again has dimension three.

Before proceeding, we also note another way to derive the
finite difference equations (5) that gives a physical interpretation
of the costate trajectory. For i ∈ {0, . . . , n − 1}, let us simply
define (p1(i + 1), p2(i + 1)) as the force on link i due to joint
i, and similarly p3(i + 1) as the torque on link i due to joint i,
written in the coordinates of frame 0. These forces and torques
are transmitted from link to link by torsional springs of unit
modulus. Hence, it is clear both that −p(i) describes the force
and torque on link i due to joint i − 1 and that u(i) = −p3(i +
1) for all i ∈ {0, . . . , n − 1}. From a force and torque balance
(see Fig. 2), we have

p1(i + 1) = p1(i)

p2(i + 1) = p2(i)

p3(i + 1) = p3(i) + p1(i)ri sin x3(i) − p2(i)ri cos x3(i)

exactly as in (5). In particular, if the chain is in static equilib-
rium and is not in singularity, then its configuration is uniquely
defined by the force and torque p(0) at the fixed base, i.e., by
the choice of a ∈ A. Singularities of the chain are exactly those
configurations at which a is indeterminate. This relationship

between forces and torques and the costate trajectory p (which
is nothing more than a collection of Lagrange multipliers) is
entirely classical [50]. We will use it in Section IV-A to justify
our choice of sampling strategy for manipulation planning.

C. Sufficient Conditions for Static Equilibrium

Given (u, x) = Ψ(a) and p = Γ(a) for a ∈ A, we compute

∇2
u(i)u(i)H (x(i), p(i + 1), u(i)) = 1

∇2
u(i)x(i)H (x(i), p(i + 1), u(i)) = [ 0 0 0 ]

∇2
x(i)x(i)H (x(i), p(i + 1), u(i)) = Qi

for i ∈ {0, . . . , n − 1}, where

Qi =

⎡
⎢⎣

0 0 0

0 0 0

0 0 −ri (a1 cos x3(i) + a2 sinx3(i))

⎤
⎥⎦ .

We use δu ∈ TQ and δx(0), . . . , δx(n) ∈ TX to denote per-
turbations of the input and state trajectory, where in this case
TQ and TX may be identified with Q and X , respectively. The
following theorem is an application of second-order sufficiency
conditions for equality-constrained minimization, similar to [55,
Ch. 2.6]:

Theorem 3: Let (u, x) = Ψ(a) and p = Γ(a) for a ∈ A. If
(δu, δx) = (0, 0) is the unique solution to

minimize
δ u ∈ T Q

δ x (0) , . . . , δ x (n ) ∈ T X

1
2

n−1∑
i=0

(
δx(i)T Qiδx(i) + δu(i)2)

subject to δx(i + 1) = Jiδx(i) + e3δu(i)

for all i ∈ {0, . . . , n − 1}
δx(0) = 0

δx(n) = 0 (9)

then (u, x) is a local optimum of (2) for b = x(n).
Proof: See [54, Ch. 11.5]. �
Theorem 3 allows us to say which points a ∈ A actually

produce local optima Ψ(a) ∈ C of (2). In particular, let

Astable ⊂ A

be the set of all a for which (δu, δx) = (0, 0) is the unique
solution to (9), and let

Cstable = Ψ(Astable) ⊂ C.

The following result establishes correctness of ISSTABLE (see
Fig. 3), which tests membership in Astable .

Theorem 4: The point a ∈ A is an element of Astable if and
only if ISSTABLE(a) returns TRUE.

Proof: See Appendix C. �
Another important consequence of membership in Astable is

smooth local dependence of (2) on variation in b. Define

Bstable = {x(n) ∈ B : (u, x) ∈ Cstable}
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Fig. 3. Algorithm that checks the membership of a in Astab le ⊂ A.

and let Φ : C → B be the map taking (u, x) to x(n). We note
that Astable is open, hence that

Ψ|As t a b l e : Astable → Cstable

is a diffeomorphism. The following theorem is then an applica-
tion of sensitivity analysis to equality-constrained minimization,
similar to [55, Ch. 6.10–6.11]:

Theorem 5: The map

Φ ◦ Ψ|As t a b l e : Astable → Bstable

is a local diffeomorphism.
Proof: See [54, Ch. 11.7]. �

D. Straight-Line Paths

In what follows, we require the computation of “straight-line
paths” in both A and B. Let astart , agoal ∈ Astable . We will say
that astart and agoal are A-connected if

astart + t (agoal − astart) ∈ Astable

for t ∈ [0, 1]. It is equivalent to say that astart and agoal are
connected by a straight-line path inAstable . In order to define the

appropriate notion of B-connected, we first provide a recursive
formula to compute ∇a (Φ ◦ Ψ|As t a b l e ). Given (u, x) = Ψ(a)
and p = Γ(a) for a ∈ A, we apply Lemma 4 (see Appendix B)
to rewrite (5) as

x1(i + 1) = x1(i) + ri cos x3(i)

x2(i + 1) = x2(i) + ri sinx3(i)

x3(i + 1) = x3(i) − a1 (x2(i) + ri sinx3(i))

+ a2 (x1(i) + ri cos x3(i)) − a3 .

Taking the gradient of both sides with respect to a, we find that
the matrix D(i) ∈ R3×3 with entries

[D(i)]jk =
∂xj (i)
∂ak

satisfies the update rule

D(i + 1) = F (i)D(i) + G(i) (10)

where

F (i) =

⎡
⎢⎣

1 0 −ri sinx3(i)

0 1 ri cos x3(i)

a2 −a1 1 − ri (a1 cos x3(i) + a2 sin x3(i))

⎤
⎥⎦

G(i) =

⎡
⎢⎣

0 0 0

0 0 0

−x2(i) − ri sinx3(i) x1(i) + ri cos x3(i) −1

⎤
⎥⎦ .

Evaluating (10) for i ∈ {0, . . . , n − 1} with initial condition
D(0) = 0 produces ∇a (Φ ◦ Ψ|As t a b l e ) = D(n). Now, let

bstart =Φ ◦ Ψ|As t a b l e (astart) and bgoal =Φ ◦ Ψ|As t a b l e (agoal).

Define β : [0, 1] → B by

β(t) = bstart + t (bgoal − bstart)

where the angular difference is taken modulo 2π and restricted
to (−π, π] as usual. Assume that β(t) ∈ Bstable for all t ∈ [0, 1].
Let α : [0, 1] → A be the solution to

α̇(t) =
(
∇a (Φ ◦ Ψ|As t a b l e )

∣∣
a=α(t)

)−1
(bgoal − bstart) (11)

with the initial condition α(0) = astart . We know that this so-
lution exists and is unique because Φ ◦ Ψ|As t a b l e is a local dif-
feomorphism. Then, by construction, we have

β(t) = Φ ◦ Ψ|As t a b l e ◦ α(t)

for t ∈ [0, 1]. Note that, because Φ ◦ Ψ|As t a b l e is only a lo-
cal diffeomorphism, this result does not necessarily imply that
α(1) = agoal . We will say that astart and agoal are B-connected
if indeed α(1) = agoal and if our assumption that β(t) ∈ Bstable
for t ∈ [0, 1] was correct. We will use our definition of A-
connected and B-connected as local connection strategies in
the sampling-based planning algorithm in Section IV-A.

IV. QUASI-STATIC MANIPULATION

The results of Section III make it clear how to do quasi-static
manipulation planning for the planar elastic kinematic chain in
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Fig. 1. Recall that we want to find a path of the gripper that
causes the chain to move between given start and goal config-
urations, while remaining in static equilibrium. As pointed out
by Lamiraux and Kavraki [1], it is equivalent to finding a path
of the chain through its set of equilibrium configurations. What
makes this problem seem hard is the apparent lack of coordi-
nates to describe these equilibrium configurations. Section III
gives us the coordinates we need.

In particular, we showed that any equilibrium configuration
can be represented by a point in the open subset Astable ⊂ A ⊂
R3 . It is entirely correct to think of A as the “configuration
space” of the chain during quasi-static manipulation, and to
think of Astable as the “free space.” Theorem 2 tells us how to
map points in A to configurations of the chain. Theorem 4 tells
us how to test membership in Astable , i.e., it gives us a “colli-
sion checker.” Finally, Theorem 5 tells us that paths in Astable
can be “implemented” by the robotic gripper by establishing a
well-defined map between differential changes in the shape of
the chain (represented by Astable) and in the placement of the
gripper (represented by Bstable).

In other words, we have expressed the quasi-static manipu-
lation planning problem for planar elastic kinematic chains as
a standard motion planning problem in a configuration space
of dimension three, for which there are hundreds of possible
solution approaches [57]–[59].

In Section IV-A, we present one solution approach based
on the use of a sampling-based planning algorithm. In
Section IV-B, we compare this approach with what was sug-
gested by the representative work of Moll and Kavraki [2].
Finally, in Section IV-C, we reconsider our choice of coordi-
nates in light of concerns about the sensitivity of Ψ : A → C to
perturbation.

A. Sampling-Based Planning Algorithm

Here is one way to implement a sampling-based algorithm,
such as probabilistic roadmap planning [60], for quasi-static
manipulation planning:

� Sample points uniformly at random in

{a ∈ A : ‖a‖∞ ≤ w}

where w is an upper bound on allowable forces (a1 , a2)
and torques a3 at the base of the chain (see Section III-B).

� Add each point a as a node to the roadmap if the function
ISSTABLE(a) returns TRUE (see Section III-C).

� Add an edge between each pair of nodes a and a′ if they are
A-connected (see Section III-D). This test can be approx-
imated as usual by sampling points along the straight-line
path from a to a′ at some resolution, evaluating ISSTABLE

at each point.
� Declare astart , agoal ∈ Astable to be path-connected if they

are connected by a sequence of nodes and edges in the
roadmap. This sequence is a continuous and piecewise-
smooth map

α : [0, 1] → Astable

where α(0) = astart , and α(1) = agoal .

� Move the robotic gripper along the path

Φ ◦ Ψ|As t a b l e ◦ α : [0, 1] → Bstable .

This path is again continuous and piecewise-smooth, and
can be evaluated at waypoints t ∈ [0, 1] by solving the finite
difference equations (5).

Each step is trivial to implement using modern numerical
methods. It is also easy to include other constraints, such as
self-collision, within this basic framework.

B. Analysis and Experimental Results

The overall structure of the algorithm in Section IV-A is
exactly as suggested by Moll and Kavraki [2]. The key difference
here is the choice of sampling and local connection strategies,
and, particularly, the choice of space in which to implement
these strategies. Instead of computing samples and straight-
line paths in B (boundary conditions), we compute them in A
(equilibrium configurations), which is something we can do only
because of the analysis provided in Section III.

One advantage of this choice is that points inA uniquely spec-
ify equilibrium configurations of the chain, which can be com-
puted by evaluating the finite difference equations (5). Points in
B do not uniquely specify equilibrium configurations, which in
this case depend on astart and on the entire path

β : [0, 1] → B

taken by the gripper and must be computed by solving a dif-
ferential equation similar to (11). Indeed, we emphasize that
“start” and “goal” for manipulation planning must be points
in Astable , or equivalently points in Cstable through the dif-
feomorphism Ψ. It is insufficient to specify start and goal by
points in Bstable . We note further that planning heuristics like
lazy collision-checking [61]—which bring huge speedups in
practice—are easy to apply when planning in A but hard to
apply when planning in B.

A second advantage of our choice to work in A is that
straight-line paths in A are uniformly more likely to be fea-
sible (as a function of distance) than straight-line paths in B.
As a consequence, we expect that fewer nodes will be re-
quired by a sampling-based planner to capture the connectivity
of Astable [58], [59]. Before presenting empirical results that
justify this claim, we will discuss why it might be true.

Consider the four-joint chain in Fig. 4. If we restrict |u(i)| ≤
π, then there are at most two inverse kinematic solutions for
any given u(0); therefore, it is possible to visualize the energy
landscape and to see the local minima. Fig. 4, in particular,
shows three different equilibrium configurations associated with
the same boundary conditions. Each one corresponds to a local
minimum of potential energy. In addition, snapshots of quasi-
static manipulation for a particular choice of astart and agoal are
shown. In this case, astart and agoal areA-connected. Therefore,
the algorithm in Section IV-A produces a single straight-line
path in Astable . This path is implemented by moving the gripper
along the path

Φ ◦ Ψ|As t a b l e ◦ α : [0, 1] → B
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Fig. 4. Three equilibrium configurations of a four-joint elastic kinematic chain for fixed boundary conditions. Each one corresponds to a local minimum of
potential energy, i.e., to a local optimum of (2). We show the point a ∈ A and the configuration Ψ(a) ∈ C associated with each local minimum. We are showing
only a slice of A for fixed a1 in each case—the nonshaded part of this slice is in Astab le . Note that the configuration at upper right is nonsingular. Snapshots of
quasi-static manipulation from Ψ(astart ) to Ψ(agoal )— which are given by a straight-line path from astart to agoal—are shown at lower left. In this example,
the first link is held fixed, and we imagine that a robotic gripper is changing the position and orientation of the last link. The energy landscape, of course, varies
along this path (see multimedia attachment as supplementary material).

in Bstable , where

α(t) = astart + t (agoal − astart) .

It is interesting to consider what would have happened if we had
tried to plan a path from astart to agoal by working in the task
spaceB rather than in the spaceA of equilibrium configurations.
Clearly, the resulting plan cannot be represented by a single
straight line in B. We have

bstart = Φ ◦ Ψ|As t a b l e (astart) = Φ ◦ Ψ|As t a b l e (agoal) = bgoal

in this case (recalling that equality in orientation is taken mod-
ulo 2π); therefore, (11) results in zero motion—i.e., astart and
agoal are not B-connected. In the language of sampling-based
planning [58]–[60], we say that agoal is visible from astart when
using a straight-line local connection strategy in A, but is not
visible when using the analogous strategy in B.

We can generalize this example as follows.
Lemma 1: If a, a′ ∈ Astable are B-connected and a �= a′, then

Φ ◦ Ψ|As t a b l e (a) �= Φ ◦ Ψ|As t a b l e (a
′).

Proof: Assume to the contrary that

b = Φ ◦ Ψ|As t a b l e (a) = Φ ◦ Ψ|As t a b l e (a
′) = b′.

Then, the straight-line path from b to b′ results in zero motion;
therefore, we must have had a = a′, which is a contradiction. �

As a corollary, we can prove an even stronger result.
Lemma 2: Let a, a′a′′ ∈ Astable . Assume that a �= a′ and Φ ◦

Ψ|As t a b l e (a) = Φ ◦ Ψ|As t a b l e (a
′). If a and a′′ are B-connected,

then a′ and a′′ are not B-connected.
Proof: First, consider the case a = a′′. We have a′ �= a′′

by assumption; therefore, Lemma 1 implies that a′ and a′′

are not B-connected. Now, consider the case a �= a′′. De-
fine astart = a′′. Since Φ ◦ Ψ|As t a b l e (a) = Φ ◦ Ψ|As t a b l e (a

′), the
path α : [0, 1] → A produced by (11) is the same regardless of

whether agoal = a or agoal = a′. In particular, since both a �= a′

and α(1) = a by assumption, we must have α(1) �= a′. There-
fore, by definition, a′ and a′′ are not B-connected. �

Lemma 2 implies that no fewer than three “straight-line paths”
in Bstable are required to connect two different equilibrium con-
figurations that share the same boundary conditions. No such
restriction exists on connections made in Astable , strongly sug-
gesting that Astable has favorable visibility properties (in gen-
eral) compared with Bstable .

Fig. 5 shows experimental results that support this claim for
a chain with n = 4 joints and with n = 10 joints. In each case,
20 000 pairs of points a, a′ ∈ Astable were generated by sam-
pling uniformly at random in

{a ∈ A : |a1 | < 100, |a2 | < 100, |a3 | < π}
and rejecting points that were not in Astable . We tested whether
each pair of points was A-connected and B-connected (as in
Section III-D), including joint limits (restricting |u(i)| < π for
i ∈ {0, . . . , n − 1}) and self-collision as well as stability con-
straints. We computed the probability that each type of con-
nection was successful as a function of Euclidean distance in
A, B, and Q. Fig. 5 shows that A-connection was, in general,
uniformly more likely to be successful as a function of distance
than B-connection. This result held regardless of the measure
used for distance. The only apparent exception to this result in
our experiments was for n = 4 as distance in A grew higher
than 20. However, note that—as shown by the histogram in
Fig. 5—this case also corresponded to very low counts in the
number of sample pairs, exactly where we might expect to see
higher variance in our results.

Given that similar results were obtained for a chain with n = 4
joints and n = 10 joints in Fig. 5, it is natural to wonder if there
was a corresponding similarity in the shape of Astable . In fact,
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Fig. 5. Probability of successful local connection between randomly sampled points a, a′ ∈ Astab le using straight-line paths in A (blue circles) and in B (orange
triangles) as a function of distance for a chain with (a) n = 4 joints and (b) n = 10 joints. Results are shown with respect to distance measured in A (left), B
(center), and Q (right). A histogram shows the induced distribution after 20 000 samples over each measure of distance. (a) Results for n = 4 joints. (b) Results
for n = 10 joints.

Fig. 6. To maintain fixed b ∈ B as n increases, the point a ∈ A must scale by
a factor that approaches 1/n (asymptotes are shown as solid gray lines). The
resulting configuration Ψ(a) ∈ C is shown in inset for n = 4, 10, 25, 100.

it is possible to establish asymptotic convergence of Astable to
a limiting set as n gets large. It will suffice to illustrate this
convergence by example. In particular, Fig. 6 shows the result
of holding b ∈ B constant, while increasing n. To maintain this
boundary condition b, the point a ∈ A was required to scale
by a factor that approached 1/n. Moreover, the scaled point
na converged to the initial costate (equivalently, the force and
torque at the fixed base) that would have produced the limiting

configuration Ψ(a) in a continuum model of the chain. We will
briefly describe such a model in Section V—it is the topic of
ongoing work [51], [52].

C. On the Choice of Coordinates

Our approach to manipulation planning has been based on the
knowledge that A is a valid choice of global coordinates with
which to describe equilibrium configurations Cstable ⊂ C of the
chain. This result follows (by definition) from the diffeomor-
phism Ψ : A → C. Readers familiar with numerical methods
for optimal control may nevertheless remain concerned about
our choice of coordinates and, in particular, about the sensitivity
of this diffeomorphism—since we derived it by using an indi-
rect method (i.e., by introduction of a costate trajectory), we
expect that small perturbations about a ∈ A may give rise to
large perturbations about (u, x) = Ψ(a) ∈ C.

There are two reasons why this concern—which is motivated
by our use of an indirect method—is somewhat misguided.
First, we considered a discrete-time model (2) in this paper, and
the distinction between indirect and direct methods of optimal
control only makes sense in a continuous-time setting [62].
Second, were we to consider a continuous-time model (as we do
in [51] and [52]), our approach to manipulation planning—with
sampling and local connection in A—would still not require
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numerical solution of (2) for fixed b. Even local connection with
straight-line paths in B (see Section III-D) would require only
the computation of neighboring extremal solutions, for which
indirect methods are well suited [55], [62].

However, there are also two reasons why the sensitivity
of Ψ(a) to perturbations about a should, indeed, concern us.
First, sampling-based planning algorithms rely on accurate dis-
tance metrics for good performance. These metrics tell us, for
example, when it is worthwhile to check if sampled points
a, a′ ∈ Astable are A-connected. Euclidean distance is a bad
metric near points in A at which Ψ is highly sensitive. Second,
robust implementation of planned paths in Astable requires in-
sensitivity of the equilibrium configuration (u, x) to changes
in the gripper placement b. As we saw in Section III-D, it is
equivalent that ∇a(Φ ◦ Ψ|As t a b l e ) have a low condition num-
ber, a property that is directly related to the sensitivity of Ψ.
As a heuristic, we might enforce an upper bound on the condi-
tion number of ∇a(Φ ◦ Ψ|As t a b l e ) or sample more densely near
points in A at which this condition number is high—we leave a
full consideration of this problem to future work.

V. CONCLUSION

In this paper, we have looked at the problem of quasi-static
manipulation planning for a kinematic chain with n joints that
are linearly elastic torsional springs. What has made this prob-
lem seem hard in the past is the apparent lack of coordinates
to describe equilibrium configurations. Our contribution was
to show that the set of equilibrium configurations in this case
is, in fact, a smooth three-manifold that can be parameterized
globally by a single chart. This result allowed us to treat ma-
nipulation planning like any other motion planning problem—it
produced a “configuration space” A, a “collision checker” to
test membership in the part Astable of A that corresponds to
equilibrium configurations, and a diffeomorphism that allowed
us to “implement” paths in Astable by paths of the gripper. We
discussed several advantages of planning in A, in particular
showing through analysis and experiments that Astable has fa-
vorable visibility properties compared with the space Bstable of
boundary conditions.

We acknowledge that the chain is not necessarily a good
model of any “real-world” object. Here, it served primarily to
illustrate our new approach to manipulation planning. We chose
it for this purpose because its basic structure should be familiar
to any student of robotics and because equilibrium configu-
rations could be described as local optima of a discrete-time
optimal control problem (as opposed to continuous-time)—this
second property allowed us to rely on well-known necessary
and sufficient conditions for optimality [54], [55].

Our approach is not restricted to this choice of model, how-
ever. In [51] and [52], we extend our theoretical framework to
analysis of “Euler’s elastica” (which is a continuous analog of
the chain we consider in this paper [63]) and to analysis of
the Kirchhoff elastic rod (which is a generalization of Euler’s
elastica to a 3-D workspace [44] that has been used to model
objects like flexible wire [2]). Equilibrium configurations of the
elastica are local optima of the continuous-time optimal control

problem

minimize
x,u

1
2

∫ 1

i=0
u2dt

subject to ẋ1 = cos x3

ẋ2 = sinx3

ẋ3 = u

x(0) = 0, x(1) = b (12)

for some b ∈ B. Application of Pontryagin’s maximum princi-
ple produces results similar to what we derived in Section III
for the chain (i.e., the space of all local optima is a smooth
three-manifold). Equilibrium configurations of the rod are local
optima of the geometric optimal control problem

minimize
q ,u

1
2

∫ 1

0

(
c1u

2
1 + c2u

2
2 + c3u

2
3
)
dt

subject to q̇ = q(u1X1 + u2X2 + u3X3 + X4)

q(0) = e, q(1) = b (13)

where c1 , c2 , c3 > 0 are parameters that weight components of
bending and torsion, q(t) ∈ SE(3), e is the identity element
of SE(3), and {X1 , . . . , X6} is a basis for the Lie algebra of
SE(3). Again, results are similar to Section III (i.e., the space of
all local optima is a smooth six-manifold), although the analysis
in this case is considerably more involved and follows from Lie–
Poisson reduction [64].

These extensions to our theoretical framework are being val-
idated with preliminary hardware experiments. In [52], for ex-
ample, we enable an industrial robot to manipulate a thin, flex-
ible strip of metal, which we show is modeled well by Euler’s
elastica. Experiments like these suggest that our approach to
manipulation planning may, indeed, have an impact on the mo-
tivational applications listed in Section I.

Before closing, we will briefly describe two other extensions
of a similar nature that are the topic of ongoing work. The first
extension shows by example that our approach is not restricted to
elastic objects (or, at least, not to objects with purely elastic en-
ergy). The second extension relates to parameter identification,
with potential application (for instance) to data-driven modeling
and perception of surgical thread [39].

1) Gravity and Other External Forces: It may be possible to
generalize our approach to deal with other applied forces. For
example, assume that each link i has mass mi , that joints are
massless, and that gravity acts along the −e2 axis of frame 0.
The total potential energy in the chain is then

n−1∑
i=0

(
1
2
u(i)2 + mig

(
x2(i) +

ri sinx3(i)
2

))
.

In the summation, the first term is the elastic energy in joint i as
earlier (2), Section III-A and the second term is the energy due
to gravity. We expect that analysis in this case would proceed
exactly as in Section III, with similar results. Other applied
forces that admit representation as the gradient of a potential
might be incorporated in the same way. An apparently much
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harder problem is presented by kinematic chains of arbitrary
topology (e.g., branching or closed loop) and, in general, by
forces arising from interaction between disparate links, as in
protein models.

2) Calibration of Physical Parameters: We assumed that the
torsional spring in each joint of the chain had unit modulus of
elasticity. It is easy to relax this assumption; therefore, the total
elastic energy becomes

1
2

n−1∑
i=0

ciu(i)2

for some set of parameters c0 , . . . , cn−1 > 0. We might also
allow each spring to have a nonzero bias, as in

1
2

n−1∑
i=0

(u(i) − ci)2

for some c0 , . . . , cn−1 ∈ R. In each case, analysis would again
proceed exactly as in Section III. Although this extension is an
easy one, it gives rise to the much more interesting problem
of “calibration”—how do you infer what is the modulus (or
the angular bias) at each joint? Finding these parameters from
observations of equilibrium configurations can be cast as an
inverse optimal control problem [39]. The structure established
by Theorem 2 allows us to define a notion of orthogonal distance
between C and these observations, similar to [65], and may lead
to an efficient method of solution.

APPENDIX A

SMOOTH MANIFOLDS

Here, we recall basic definitions and state a useful fact about
smooth (i.e., differentiable) manifolds [66].

A topological n-manifold M is a topological space that is
Hausdorff, second countable, and locally Euclidean of dimen-
sion n. A chart on M is a pair (U , α), where U ⊂ M and
α(U) ⊂ Rn are both open and where α : U → α(U) is a home-
omorphism. An atlas on M is a collection of charts whose
domain covers M. Two charts (U , α) and (V,Φ) on M are
smoothly compatible if either U and V are disjoint or the com-
position Φ ◦ α−1 is a diffeomorphism (i.e., is a smooth function
between open subsets of Rn that has a smooth inverse, where by
“smooth” we mean in the class C∞). A smooth atlas is an atlas
in which any two charts are smoothly compatible. A chart that is
part of a smooth atlas is called a smooth chart. A smooth atlas is
maximal if it is not contained in any other strictly larger smooth
atlas. A maximal smooth atlas is called a smooth structure. A
smooth n-manifold is a topological n-manifold equipped with a
smooth structure. It can be shown that any smooth atlas is con-
tained in a unique maximal smooth atlas; therefore, to define a
smooth n-manifold M, it suffices only to specify some smooth
atlas on M. A map f : M → N between smooth manifolds M
and N is a smooth map if for every p ∈ M, there exist smooth
charts (U , α) on M and (V,Φ) on N such that

p ∈ U , f(p) ∈ V, f(U) ⊂ V (14)

and Φ ◦ f ◦ α−1 : α(U) → Φ(V) is smooth. A diffeomorphism
between smooth n-manifolds M and N is a smooth map f :
M → N that is bijective and that has a smooth inverse.

We require the following result.
Lemma 3: If the topological n-manifold M has an atlas

consisting of the single chart (M, α), then N = α(M) is a
topological n-manifold with an atlas consisting of the single
chart (N , idN ), where idN is the identity map. Furthermore,
both M and N are smooth n-manifolds and α : M → N is a
diffeomorphism.

Proof: Since (M, α) is chart,N is an open subset ofRn and α
is a bijection. Hence, our first result is immediate and our second
result requires only that both α and α−1 are smooth maps. For
every p ∈ M, the charts (M, α) and (N , idN ) satisfy (14) and
we have idN ◦ α ◦ α−1 = idN ; therefore, α is a smooth map.
For every q ∈ N , the charts (N , idN ) and (M, α) again satisfy
(14) and we have α ◦ α−1 ◦ idN = idN ; therefore, α−1 is also a
smooth map, and our result follows. �

APPENDIX B

PROOF THAT Ψ : A → C IS A HOMEOMORPHISM

Our main result in this section is Lemma 9, which is necessary
in the proof of Theorem 2 in Section III-B. We will first prove
five supporting lemmas.

Lemma 4: If (u, x) = Ψ(a) and p = Γ(a) for a ∈ R3 , then

u(i) = −a1x2(i + 1) + a2x1(i + 1) − a3

for i ∈ {0, . . . , n − 1}.
Proof: From (5), we compute

p1(i + 1) = p1(i)

p2(i + 1) = p2(i)

p3(i + 1) = p1(i) (x2(i + 1) − x2(i))

− p2(i) (x1(i + 1) − x1(i)) + p3(i)

for i ∈ {0, . . . , n − 1}. Since x(0) = 0 and p(0) = a, it is
equivalent that

p1(i) = a1

p2(i) = a2

p3(i) = a1x2(i) − a2x1(i) + a3

for i ∈ {0, . . . , n}. We conclude that

u(i) = −p(i + 1)T e3

= −p3(i + 1)

= −a1x2(i + 1) + a2x1(i + 1) − a3

as desired. �
Lemma 5: A point (u, x) is regular with respect to (2) if and

only if

u(i) /∈ {kπ : k ∈ Z}

for some i ∈ {1, . . . , n − 2}.
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Proof: The problem (2) has 3n + 6 equality constraints. By
definition, a point (u, x) is regular with respect to these con-
straints if the corresponding gradient vectors are linearly inde-
pendent [54]. By direct computation, it is equivalent that

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0 −I 0 · · · 0 0
e3 0 · · · 0 0 J0 −I · · · 0 0
0 e3 · · · 0 0 0 J1 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...

0 0 · · · e3 0 0 0 · · · −I 0
0 0 · · · 0 e3 0 0 · · · Jn−1 −I

0 0 · · · 0 0 0 0 · · · 0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is full rank. By row reduction, it is equivalent that

[ (Jn−1 · · · J1) e3 · · · Jn−1e3 e3 ] (15)

is full rank. Matrix (15) is the manipulator Jacobian; there-
fore, (u, x) is regular if and only if it defines a nonsingular
configuration of the kinematic chain. Nonsingular configura-
tions are exactly those satisfying u(i) /∈ {kπ : k ∈ Z} for some
i ∈ {1, . . . , n − 2} (e.g., see [67]). �

Lemma 6: Pick a ∈ R3 , and let (u, x) = Ψ(a). If for some
i ∈ {0, . . . , n − 2} there exist mi,mi+1 ∈ Z such that u(i) =
miπ and u(i + 1) = mi+1π, then a ∈ S.

Proof: From (5) and Lemma 4, we compute

miπ = u(i − 1) − a1ri sinx3(i) + a2ri cos x3(i)

mi+1π = miπ + cos miπ (−a1ri sin x3(i) + a2ri cos x3(i)) .

Solving, we find that

u(i − 1) = (mi ± (mi − mi+1)) π = mi−1π

for some mi−1 ∈ Z. By repeating this process, we find that
u(0) = m0π and u(1) = m1π for some m0 ,m1 ∈ Z. From (5),
we compute

x(1) =

⎡
⎢⎣

0

0

m0π

⎤
⎥⎦ and x(2) =

⎡
⎢⎣

(n − 1)−1 cos(m0π)

0

(m0 + m1)π

⎤
⎥⎦ .

By Lemma 4, we have

m0π = u(0) = −a3

m1π = u(1) = a2(n − 1)−1 cos(m0π) − a3 .

Solving, we find that

a2 = ±(m1 − m0)(n − 1)π

a3 = −m0π

hence that a ∈ S. �
Lemma 7: A point Ψ(a) is regular with respect to (2) if and

only if a ∈ A.
Proof: We will prove the contrapositive that (u, x) = Ψ(a)

is not regular if and only if a ∈ S = R3\A. By Lemma 5,
it is equivalent to show that u(i) ∈ {kπ : k ∈ Z} for all i ∈
{1, . . . , n − 2} if and only if a ∈ S.

First, let a ∈ S and take (u, x) = Ψ(a). We have

u(0) = −a3 (by Lemma 4)

∈ {kπ : k ∈ Z} (by definition of S).

For some i ∈ {1, . . . , n − 2}, assume u(j) ∈ {kπ : k ∈ Z} for
all j ∈ {0, . . . , i − 1}. From (5), it must also be true that
x1(i + 1) = m(n − 1)−1 and x2(i + 1) = 0 for some m ∈ Z.
By Lemma 4 and the definition of S, we conclude that

u(i) = a2m(n − 1)−1 − a3 = (km − l)π

for some k, l ∈ Z, hence, that u(i) ∈ {kπ : k ∈ Z}. Our result
proceeds by induction.

Now, let a ∈ R3 , take (u, x) = Ψ(a), and assume u(i) ∈
{kπ : k ∈ Z} for all i ∈ {1, . . . , n − 2}. In particular, we
have u(1) = m1π and u(2) = m2π for some m1 ,m2 ∈ Z. By
Lemma 6, a ∈ S. �

Lemma 8: If Ψ(a) = Ψ(a′) for a, a′ ∈ A, then a = a′.
Proof: Suppose (u, x) = Ψ(a) for some a ∈ A. It suffices

to show that a is uniquely determined by (u, x). From (5) and
Lemma 4, we have

⎡
⎢⎣
−ri sinx3(i) ri cos x3(i) 0
−rj sinx3(j) rj cos x3(j) 0

0 0 1

⎤
⎥⎦

⎡
⎢⎣

a1

a2

a3

⎤
⎥⎦

=

⎡
⎢⎣

u(i) − u(i − 1)
u(j) − u(j − 1)

−u(0)

⎤
⎥⎦ (16)

for any i, j ∈ {0, . . . , n − 1}. By Lemma 7, (u, x) is regular.
Hence, by Lemma 5, we can choose i, j ∈ {1, . . . , n − 2} so
that (16) admits a unique solution. Our result follows. �

We are now ready to prove our main result.
Lemma 9: The map Ψ : A → C is a homeomorphism.
Proof: First, we will show that Ψ is a continuous bijection. By

construction, Ψ(a) satisfies (3) and (4) for the choice of costate
Γ(a), for any a ∈ R3 . By Lemma 7, Ψ(a) is regular if and only
if a ∈ A ⊂ R3 . As a consequence, Ψ is both well defined and
onto. Lemma 8 implies that Ψ is also one-to-one. Continuity of
Ψ then follows immediately from (5).

It remains only to show that Ψ−1 : C → A is continuous. This
result is a corollary to the proof of Lemma 8, since all quantities
in (16) depend continuously on (u, x). �

APPENDIX C

PROOF THAT ISSTABLE IS CORRECT

Our main result in this section is a proof of Theorem 4, which
establishes correctness of the algorithm ISSTABLE (see Fig. 3)
in Section III-C.

Proof of Theorem 4: Assume ISSTABLE(a) returns TRUE.
Let vj (z) be the cost to go from δx(j) = z in (9), for j ∈
{0, . . . , n − 1}. We have

vn−4(z) = min
y

{
1
2
(yT My + zT Qn−4z) : Ay = Bz

}
(17)
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where A, B, and M are as defined in Fig. 3 . The matrix A loses
rank if and only if u(n − 3) = kπ and u(n − 2) = lπ for some
k, l ∈ Z, which by Lemma 6 contradicts our assumption that
a ∈ A; therefore, A is full rank. Hence, we can rewrite (17) as
the quadratic form

vn−4(z) = min
y

{
1
2
(A†Bz + Ny)T M(A†Bz + Ny)

+
1
2
zT Qn−4z

}
.

Since NT MN > 0 by assumption, we conclude that

vn−4(z) = zT Pn−4z

where the minimum is achieved by y = −KA†Bz. With a stan-
dard dynamic programming argument, we have

vi(z) = min
δu(i)

{
1
2

(
zT Qiz + δu(i)2)

+ vi+1 (Jiz + e3δu(i))
}

(18)

for i ∈ {n − 5, . . . , 0}. If

vi+1(z) = zT Pi+1z

then since

si+1 = 1 + eT
3 Pi+1e3 > 0

by assumption, we conclude that

vi(z) = zT
(
Qi + JT

i (Pi+1 − Pi+1e3s
−1
i+1e

T
3 Pi+1)Ji

)
z

= zT Piz

where the minimum is achieved by

δu(i) = −s−1
i+1e

T
3 Pi+1Jiz.

In particular, v0(z) = zT P0z and δu(0) = −s−1
1 eT

3 P1J0z.
Since we are given δx(0) = 0, we find that δu(0) = 0, hence,
that δx(1) = 0 as well. Repeating this process, we see that (9)
has unique solution (δu, δx) = (0, 0); therefore, a ∈ Astable .

Now, assume ISSTABLE(a) returns FALSE. If NT MN �> 0,
then (17) is either unbounded below or admits multiple solutions
for y, both of which imply that a /∈ Astable . If 1 + eT

3 Pi+1e3 �>
0 for some i ∈ {n − 5, . . . , 0}, then (18) is either unbounded
below or admits multiple solutions for δu(i), both of which again
imply that a /∈ Astable . These are the only two possibilities;
therefore, we have our result. �
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