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ABSTRACT 
Analysts engaged in real-time monitoring of cybersecurity 
incidents must quickly and accurately respond to alerts generated 
by intrusion detection systems.  We investigated two 
complementary approaches to improving analyst performance on 
this vigilance task: a graph-based visualization of correlated IDS 
output and defensible recommendations based on machine 
learning from historical analyst behavior.  We tested our approach 
with 18 professional cybersecurity analysts using a prototype 
environment in which we compared the visualization with a 
conventional tabular display, and the defensible recommendations 
with limited or no recommendations.  Quantitative results showed 
improved analyst accuracy with the visual display and the 
defensible recommendations.  Additional qualitative data from a 
“talk aloud” protocol illustrated the role of displays and 
recommendations in analysts’ decision-making process.  
Implications for the design of future online analysis environments 
are discussed. 

Categories and Subject Descriptors 
H.5.2. [Information Interfaces and Presentation]: User 
Interfaces – user-centered design; 
K.6.5. [Management of Computing and Information Systems]: 
Security and Protection – invasive software, unauthorized access. 

General Terms 
Design, Security, Human Factors. 

Keywords 
Managed security services, information visualization, user studies. 

1. INTRODUCTION 
Vigilance tasks are those that require sustained attention, in which 
participants typically monitor frequent, repetitive signals for 
uncommon or unpredictable events, and react appropriately when 
such events occur. [22]  In the cybersecurity domain, vigilance 
tasks are epitomized by the work of “online” analysts in a Security 
Operations Center (SOC), who engage in real-time monitoring 
and investigation of computer and network health, with a 
particular emphasis on the detection and triage of problems 

caused by malicious people and code. 

Online analysts have a difficult job, characterized by the need to 
integrate specialized technical knowledge with contextual 
knowledge under severe time constraints, often with too little or 
extraneous information, an abundance of false alarms, and 
adversaries actively seeking to prevent or mislead analysis.  
Worse still, failure in this task can have direct and severe 
consequences for the financial health and reputation of the injured 
party.  For example, it is estimated that computer viruses alone 
cost businesses billions of dollars each year. [14]  Furthermore, 
the problem has been getting worse, straining analyst and 
organizational resources. [8] 

Our goal is to help online analysts complete their tasks more 
quickly and accurately.  We have investigated two complementary 
approaches to improving analyst performance: an interactive 
graph-based visualization of correlated output from Intrusion 
Detection Systems (IDS) and defensible incident categorization 
recommendations based on machine learning from historical 
analyst behavior.  Defensible recommendations are those that the 
system can justify or explain, supporting analysts’ capacity to 
understand and evaluate the relevance of the recommendations.  
Both incident visualization and categorization recommendations 
are driven from a graph-structured model created for each 
incident, which is initialized from raw event data and augmented 
with contextual and asset information. 

In a managed security environment, each online analyst may be 
monitoring dozens or hundreds of protected networks with only a 
few minutes to devote to the analysis of a typical alarm.  This time 
constraint suggests different design criteria for visualizations 
targeting online use.  Visualizations for online analysis should 
emphasize simple, intuitive representations rather than 
information density.  The salience of visual features should be 
determined by their utility in diagnosis and response.  
Manipulations of the visualization should be facile and natural. 

We believe that our incident visualization, which we refer to as an 
"Interactive Incident Diagram" (IID), could have a variety of 
advantages over the tabular display of IDS events offered by many 
security tools.  In this paper, we study the impact of a visual or 
tabular display on analyst performance.  We also test the interplay 
of display method with the presence of incident classification 
recommendations and the ability to visualize the system’s 
justifications for its recommendations. 

The remainder of this paper is organized as follows.  Section 2 
discusses related work.  Section 3 describes the operations of one 
commercial SOC and data we obtained from their production 
systems.  Section 4 describes a prototype environment we 
constructed to test our Interactive Incident Diagrams and the 
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effects of combining them with defensible recommendations.  
Section 5 describes the design of a study with professional 
cybersecurity analysts; Section 6 presents that study’s results.  
Section 7 discusses analyst feedback on the design of our 
environment.  We conclude with suggestions for future work in 
Section 8. 

2. RELATED WORK 
Komlodi et al. [13] described three phases of work in intrusion 
detection: Monitoring, Analysis, and Response, identifying 
particular visualization needs for each.  In the Analysis phase, 
which we are primarily concerned with, analysts require powerful 
interactive visualizations that fuse information from disparate data 
sources and allow analysts to view data at multiple levels of 
detail.  The authors also emphasized the importance of grounding 
cybersecurity visualizations in analyst needs and validating 
proposed visualizations through user studies. 

Goodall [7] applied this user-centered design approach in a study 
comparing user performance with two tools for analyzing network 
packet capture data, one based on visualization, another based on 
a textual/tabular display.  The study involved both quantitative 
and qualitative methods, finding that users of TNV, the 
visualization tool, showed increased accuracy on well-defined 
tasks as well as a clear preference for the visual interface.  Our 
goal is also to compare a visualization interface with one more 
commonly used, however we focus on visualizing correlated IDS 
output rather than network traffic.  The Goodall study was 
conducted with novice users; our participants were domain 
experts, most with over five years of professional experience. 

A similar study by Thompson et al. [19] compared user 
performance on an intrusion detection task when using command 
line tools versus a visualization tool.  Task performance was 
generally better with the command line tools; the tasks were 
completed more quickly and users were more confident in their 
analysis.  Although participants preferred the command line tools 
overall, they found several aspects of the visual interface useful, 
such as the ability to see overall network activity and quickly 
identify anomalous behavior.  As in [7], the primary visualization 
was of network traffic information rather than correlated IDS 
output, and the participants were mostly students. 

There have been a number of visualizations designed for IDS 
output.  Koike and Ohno’s SnortView used simple geometric 
shapes to indicate protocol and severity in a two-dimensional grid 
relating source IP address to destination IP address and time. [12]  
IDS RainStorm by Abdullah et al. presented a zoomable interface 
allowing the display of a full day’s worth of IDS events across a 
large network. [1]  VisAlert by Livnat et al. used a radial 
visualization with smoothly animated transitions to help analysts 
visually identify IDS event patterns in time, type, and network 
location. [15]  Although both IDS RainStorm and VisAlert were 
tested with professional users this evaluation did not include 
quantitative measures of performance. 

Artificial Intelligence (AI) techniques have long been applied to 
almost every phase of real-time cybersecurity incident processing, 
from initial traffic classification to automated recommendations 
on incident disposition.  Particularly relevant to this work are 
systems where analysts’ judgments feed future defensible 
recommendations.  The work by Pietraszek on the Adaptive 
Learner for Alert Classification (ALAC) system is notable. [17]  

ALAC learned from analyst classifications which IDS events are 
true positives.  This was accomplished through non-intrusive 
methods, by seeing which events were included in the security 
incident tickets the analysts created.  The automated 
classifications could be used as suggestions for the analyst, or 
used to automatically ignore events classified as false positives 
with high confidence.  ALAC used a modified rule induction 
algorithm, allowing for the potential interpretation and review of 
generalized patterns by subject matter experts. 

Recommendations from AI systems are sometimes accompanied 
by system-generated explanations for the recommendations, 
which may serve multiple purposes.  Among other things, 
explanations can increase understanding and acceptance of 
recommendations [11], support faster and more accurate decision 
making [20][4], and enhance trust in the system recommendations 
[18].  Vig et al. [21] distinguish explanations from justifications. 
Justifications may express reasoning in the form of a conceptual 
model significantly different from the underlying recommendation 
mechanism, but should serve to support user comprehension and 
reasoning about system behavior. 

3. BACKGROUND 
3.1 Managed Security Services 
We worked with a managed security provider that offers a variety 
of cybersecurity services, including round-the-clock monitoring 
and management of security devices on customer networks.  
Online analysts in globally distributed SOCs evaluate real-time 
data from intrusion detection systems, systematically categorizing 
and prioritizing threats.  Raw events from multiple IDSes are 
funneled through an AI engine that correlates the data streams and 
identifies the situations of greatest concern, providing a 
significant reduction of what would otherwise be overwhelming 
data streams.  Higher level alerts from the AI system are 
distributed to online analysts for handling, which can include 
reviewing raw event and log details or examining the character of 
involved devices by viewing customer-provided asset data, 
historical activity, presence on blacklists, or the results of queries 
such as geolocation or WHOIS lookups. 

Analysts use a ticketing system to track security incidents.  Before 
creating a new ticket for an incident, analysts will check for 
existing tickets that the alert should be associated with, or for 
special instructions from customers that would affect the 
disposition of the alert.  The analyst assigns a category and 
priority to newly created tickets.  Customers are notified based on 
threat severity, customer preference, and the level of service 
contracted.  Attacks with severe repercussions may result in 
phoning or paging a customer representative.  Lower priority 
problems may result in email notification only.  Some alerts are 
the result of authorized activity or of malicious activity that the 
targeted assets are immune to; these types of alerts are logged for 
accountability and can be reviewed by the customer, but do not 
result in notification. 

In rare cases, the online analysts from the managed security 
provider may be authorized to take direct remedial actions on the 
protected network, such as updating firewall policies.  In most 
cases, however, the online analyst is limited to a notification and 
advisory role. 



3.2 Data Collection 
We worked with threat engineers from the managed security 
provider to extract data from production log files and databases.  
We received four types of information: alerts, events, asset details, 
and analyst ratings.  The threat engineers selected three 
undisclosed customers they felt were reasonably representative of 
their customer base.  These particular customers were also chosen 
because they all used the same type of IDS hardware, ensuring 
that attack signatures would be consistent within and between 
customers.  Information was retrieved for each of the customers 
for an eight day period for which the threat engineers believed 
there had been typical levels of activity.  The AI system created a 
total of 164 alerts for these customers during the time period.  
Data from the AI system was merged with data from the ticketing 
system, allowing us to see how each alert was handled by the 
assigned analyst.  SOC managers provided a table with the job 
role and management-assessed skill level for each of the 29 
analysts who handled an alert in our dataset. 

There were a total of seven hardware sensors across the three 
customers.  From the collected alerts, we extracted a list of all IP 
addresses that had been either a source or a destination for an 
alert.  This list was used to filter the raw stored data from each of 
the seven sensors to a manageable level.  Filtering was required to 
avoid disk quota and processing time limits.  A standard set of 
fields was collected from any event whose source or destination 
was one of the identified IP addresses.  This resulted in a 
collection of 2,869,108 raw events. 

For each of the three customers, we extracted some of the 
available hardware asset information.  This information may have 
been entered by the customer through a web-based portal or added 
by an analyst based on customer feedback.  Information for 106 
critical assets was available.  The asset data fields are usually 
semi-structured text.  For example, some information regarding 
critical open ports was given as a number, some given as a well-
known protocol abbreviation such as “HTTP”.  We addressed 
some of these issues through normalization during post-
processing for use in our knowledgebase. 

One of our primary concerns was ensuring that the collected data 
would not compromise the identity, security, or business interests 
of the customers it was taken from. 

Automatic anonymization of plain text fields such as analysts’ 
notes or remediation recommendations was infeasible, so these 
fields were not collected.  Analyst names, alert identifiers, and 
ticket identifiers were replaced with freshly minted numeric 
identifiers in a consistent manner. 

IP addresses across the dataset were anonymized using the prefix-
preserving Crypto-PAn method. [6]  The anonymization was 
applied using a consistent encryption key, ensuring that a given IP 
address would consistently map to the same output value 
regardless of which data source it was extracted from.  The 
anonymization code was executed by threat engineers who 
disposed of the encryption key after use; researchers never 
received customer IP address values. 

IP address anonymization had several side effects.  During our 
study we could not provide analysts with query actions such as 
geolocation or WHOIS lookups, as these would have returned 
random values.  We did not attempt to preserve special addresses 

such as those used for loopback, multicast, or private-use, which 
may have misled analysts.  We also saw instances where the initial 
octet of the anonymized address was either a well-known or 
unlikely value, which may have caused analysts to be more or less 
concerned about an alert than they otherwise would be. 

4. NIMBLE 
The name of our prototype cybersecurity environment is NIMBLE 
(Network Intrusion Management Benefiting from Learned 
Expertise).  The NIMBLE software reads correlated alert data 
from an input file, creates a semantic model for each alert, 
matches each alert model against historical models in order to 
create recommendations, and displays alerts to the analyst either 
visually or as tables of data. 

4.1 Semantic Summarization 
The AI alerts are triggered from aggregated events, but they do 
not contain events.  Analysts use the information in the alert to 
dig for more information in correlated events from network and 
host IDSes, firewall and proxy logs, etc.  Our gathered data was 
limited to network IDS events.  Normally, an analyst would be 
able to request e.g. all of the IDS events that involved two 
machines in the previous four hours.  However, in the context of 
our study, in which we were asking analysts to make decisions 
under severe time constraints, we did not want to introduce the 
variability in timing that a querying mechanism would have 
caused.  Instead, we needed to choose a correlation strategy that 
would select a fixed set of events from our dataset to connect to 
each alert.  The correlation strategy had to balance competing 
needs.   If the strategy selected too many events the problem 
would be too hard and the analysts would not be able to complete 
the assigned task in the time provided.  If the strategy selected too 
few events there might be too little information for the analyst to 
make an assessment, or the problem would be too easy, and the 
differences between analyst performances on the various 
conditions could be obscured by differences in reaction time. 

We investigated a variety of correlation strategies before choosing 
one that yielded problems of appropriate complexity.  The 
correlation strategy we ultimately chose for use in our study only 
included events from a relatively short time window, from the 
time of the first event triggering an alert condition to the time the 
alert was created.  Events within that time window that did not 
involve any machine in the alert information were excluded.  This 
strategy did not partner any event with more than one alert.  The 
mean number of events per alert was 106.71 (σ = 179.88), with a 
minimum and mode of 1 event and a maximum of 863. 

Semantic summarization of the set of events correlated with an 
alert represents the foundation for both our visualization and the 
NIMBLE learning and suggestion mechanism.  Our goal in 
constructing a semantic summary is to present the analyst with a 
condensed version of the information that highlights the salient 
aspects of the event set.  These condensed representations are also 
the basis by which the NIMBLE learning mechanism constructs 
models that are matched against future semantic summaries to 
derive suggestions. 

The semantic summarization algorithm clusters a set of events 
into a set of partitions.  Each partition can be characterized by a 
set of source machines, a set of destination machines, and a set of 



signatures with associated counts.  The partition signifies that 
each source has communicated with each destination by each 
signature at least once.  The counts associated with each signature 
represent the total number of events in the partition with that 
signature.  The summarization algorithm abstracts away the 
distribution of events between the sources and destinations in a 
partition and the timing of the events.  The summarization process 
partitions the events in two phases.  In the first phase, events are 
grouped into partitions with the same source and destination.  As 
the communication between two machines may often result in 
hundreds of events, often with just one or a few event signatures 
involved, this can immediately result in a vast reduction in the 
bulk of information to be dealt with.  The second phase seeks to 
merge partitions that can be merged without violating partition 
semantics.  In order to make that determination, we must be aware 
of the predecessors and successors of each machine, and the event 
signatures by which these predecessors and successors are 
connected.  Partitions can be merged if they meet the following 
criteria: 

1. Both partitions have the same set of signatures.  (Counts are 
irrelevant for merging purposes.) 

2. The sources of both partitions have the same predecessors by 
the same signatures. 

3. The sources of both partitions have the same successors by the 
same signatures. 

4. The destinations of both partitions have the same successors by 
the same signatures. 

5. The destinations of both partitions have the same predecessors 
by the same signatures. 

When partitions are merged, their source, destination, and 
signature sets are combined, and the signature counts for 
individual signatures are totaled. 

The set of partitions forms the basis for a graph-structured 
semantic model of the alert, which is represented in terms of a 
modifiable OWL ontology [2] and persisted to a shared 
knowledgebase.  Nodes within the graph represent ontological 
entities or literal values; edges represent claims of binary 
relationships between entities or between an entity and a literal 
value.  The construction process supplements the semantic alert 
model with any information from the shared knowledgebase 
concerning the individual machines described.  This information 
could include indications of manufacturer, operating system, 
network location, geographic location, owner, importance, 
installed applications and known services, etc. 

4.2 Generating Defensible Recommendations 
To make incident classification recommendations, NIMBLE 
calculates the similarity between the model for a given alert and 
historical alert models.  The scoring algorithm is based on a 
general purpose semantic matching algorithm, which attempts to 
find the least-cost correspondence between two semantic models.  
This is a classic inexact graph matching problem.  While there are 
many sophisticated approaches to doing this kind of matching (see 
for example [16]), for the NIMBLE prototype we used a simple 
best-first search of the space of possible correspondences between 
the claims.  Our matching procedure is asymmetric.  We wish to 

treat one model as a template graph, for which we seek 
correspondences in the other model’s matching graph.  Thus a 
smaller template model may find a good match embedded in the 
context of a larger matching model, and our system will have 
detected a target attack embedded within the context of a larger 
alert.  As our cybersecurity ontology does not use relationship 
hierarchies, correspondences only need to be considered between 
claims involving identical properties.  The cost function for 
matching corresponding claims depends on the sum of the 
ontological distance between unequal corresponding source and 
destination entities, which itself is determined by the percentage 
of  classes in the ancestry of the template entity that are not found 
in the ancestry of the matching entity.  The search finds the set of 
correspondences which result in the lowest cost, thus achieving 
the highest degree of match.  The reported match score ranges 
from 0 to 1.0, representing the degree of match found between the 
two semantic graphs. 

One of the benefits of this approach to recommendations is that it 
is possible for the system to provide a justification for the 
suggestions that it makes.  Many machine learning approaches do 
not share this property.  As part of the similarity calculation, we 
identify how the features of the current alert model correspond to 
the features of a similar historical model, and we can visualize this 
alignment to analysts curious about the reasoning behind the 
suggestion. 

Although we used this simple case-based reasoning approach to 
generate incident classification recommendations for use in our 
study, our ontology-based models can also be aggregated and 
generalized to form a more succinct set of abstract rules.  
Justifications remain possible with generalized rules. 

4.3 Interactive Incident Diagrams 
We created two custom versions of the NIMBLE user interface for 
use in our study with cybersecurity analysts.  One version was 
used in timed trials with varying experimental conditions, the 
other allowed exploratory interaction with our Interactive Incident 
Diagrams.  The exploratory interface is shown in Figure 1.  The 
visual styling and interaction capabilities of the IID were 
influenced by feedback from analysts on early mockups. 

The diagrams are built using the zoomable scene graph 
capabilities of the Piccolo2D library, which allows for multiple 
representations of scene elements at different zoom levels, 
smoothly animated zooms and transitions, and rich interactivity 
with embedded widgets. [3] 

The IID visualization is a graph in which each node or “card” 
represents one or more machines, and the edges connecting nodes 
represent sets of IDS signatures involving the connected 
machines.  IID graphs are directly constructed from the semantic 
summary model of an alert.  Fundamental user interactions 
include manual or automatic selection and arrangement of cards 
and smoothly zooming and moving the canvas to show cards at 
varying levels of detail.  The visual representation of a card can 
change depending on the scale at which it is being viewed.  For 
example, card text and icon decorators only appear when the 
zoom level is sufficient for legibility. 

Single Machine cards are labeled with an IP address.  If the card 
represents an internal machine – one that is part of the protected 
network – the IP address will be colored red.  If the card 



represents a machine that is a critical asset, the IP address will be 
shown in bold.  These conventions were chosen to be familiar to 
study participants.  We considered using realistic images of the 
relevant hardware for Single Machine cards but this asset 
information was typically unavailable in our collected data. 

Multiple Machine cards contain an interactive table widget where 
each row corresponds to a machine.  The table allows row 
selection, sorting by column, and vertical scrolling as necessary.  
Multiple Machine cards are labeled to indicate the common IP 
address prefix and count of the machines represented. 

Cards have a colored handle that allows for easy dragging for 
manual repositioning.  Single Machine cards also use the handle 
area to show icons for operating system, primary machine 
function, or other important information that may be available.  If 
the display is sufficiently zoomed in, Single Machine cards 
display other attributes such as geographic location, administrator, 
manufacturer, etc. as structured text.  Cards that have been 
selected by an analyst are indicated by surrounding each card with 
a translucent cyan glow. 

Cards are connected with labeled edges that indicate IDS event 
signatures and counts.  The width of the edge is an indication of 
the total number of events it represents.  The width is scaled by 
the natural logarithm of the event count, however a minimum size 
is enforced to ensure legibility of the label, which is drawn inside 
the edge. 

Although the IID is capable of using many different layout 
algorithms to position cards, our default layout algorithm places 
machines that were the source of an event on the left side of the 
diagram, those that were a destination on the right side of the 

diagram, and those that were both a  source and a destination in 
the center.  The position of cards was adjusted to limit overlap of 
either cards or edges. 

In order to keep the diagram simple, some information such as 
TCP port usage is only shown as a tooltip, displayed when the 
analyst hovers over an element of the diagram.  Other mouse 
gestures and control keys provide features such as selection of one 
or more cards to scope subsequent commands, zooming or 
panning the canvas, and organization of cards either 
geometrically, e.g. into grids, circles, stacks etc., or by attributes 
such as operating system or importance. 

NIMBLE provides suggested incident categorizations or 
“explanations” in a panel next to the alert display.  When an 
explanation is selected from the list of suggested explanations, the 
IID highlights the portions of the currently viewed alert that 
match that explanation.  The degree of match is indicated using 
three shades of orange.  The colors mean slightly different things 
for cards and edges, but in both cases the darker the orange the 
closer the match. 

For the machine cards: 

Dark Orange: Exactly the same machines.  

Medium Orange: Not the same machines, but the same clustering, 
i.e. a single machine mapped to a single machine, or many 
machines mapped to many machines. 

Light Orange: Single machines mapping to multiple machines or 
vice-versa.  

For the edges: 

Figure 1: Screenshot of IID Exploration Console 



Dark Orange: Exactly the same set of signatures (but counts may 
vary). 

Medium Orange: Some overlap in the set of signatures. 

Light Orange: No overlap in the actual signatures, but the system 
interprets something about the event activity as corresponding to 
the template model.  (E.g. could have been the same TCP port in 
both cases.) 

Hovering over an orange card or edge would show a tooltip 
detailing the differences between the currently viewed alert and 
the historical alert that was the basis for the recommendation. 

In the NIMBLE IID exploration interface, we tried a variation on 
the justification highlighting used during the study, in which we 
drew further attention to the matching portion of the IID by 
shading the background region corresponding to the convex hull 
of the matched nodes and edges.  This region would update as 
nodes were repositioned.  Some analysts preferred this rendering; 
others found the possible presence of non-matching nodes on top 
of the shaded region confusing.  One possible improvement would 
be to use a Bubble Set method to avoid shading behind non-
matching nodes. [5]  This future mechanism could be used for 
emphasizing other groups of cards on demand, for example, when 
the analyst chooses to organize cards by operating system the 
added background shading could emphasize different families of 
operating systems. 

 

Figure 2: Screenshot of Tabular Display in Study Console 

Figure 2 shows a screenshot of the NIMBLE user interface used 
in timed trials with analysts.  The primary area of the display was 
filled with either the Interactive Incident Diagram for the alert or a 
table showing correlated IDS event details for the alert.  The table 
of events showed a fixed number and order of sortable columns, 
including the event sequence number, signature, source IP 
address, destination IP address, source port, destination port, 
source asset information, and destination asset information (if 
any).  When justifications were available, selecting a suggested 
explanation would shade the background of table cells in a 
manner analogous to the IID.  Summary information such as the 
duration of the alert and the total number of included events was 
displayed in both cases. 

The bottom right of the display contained a timer showing the 
time remaining in the trial, a drop-down list for selecting the 
incident category for the alert, a drop-down list for selecting the 
priority for the alert, and a “Commit Choice” button that allowed 
the analyst to signal completion of the trial.  Between each trial, 
the user interface would enter a state in which no alert was shown.  
A large “Next Problem” button allowed the analyst to start the 
next trial when ready. 

5. STUDY 
Our user study tested the NIMBLE environment with professional 
cybersecurity analysts.  The purpose of this study was to examine 
analysts’ response to NIMBLE’s visual display, its 
recommendation capabilities, and the visual mechanism for 
exposing system reasoning.  Specific goals of this study included: 

• Understand whether and how representing information in a 
visual display might affect analysts’ comprehension of 
activity and performance on analysis tasks, relative to the 
more conventional tabular format for displaying such 
information. 

• Determine how analysts might use and benefit from system-
generated recommendations based on machine learning from 
the disposition of similar historical alerts, by comparing 
justified recommendations with cases where there are no 
justifications or no recommendations at all. 

5.1 Participants 
Nineteen analysts participated in the study.  All had a minimum of 
three years experience in the job and most had worked as an 
analyst for over five years.  Data from one of the analysts was 
removed from our dataset due to the analyst’s lack of experience 
with the particular event signatures which were key to 
accomplishing the task. 

5.2 Procedure 
Each analyst was tested individually in a two-hour session.  
Sessions began with an introduction to the study and a detailed 
training on the NIMBLE test console, lasting about 30 minutes. 
During the training, participants had an opportunity to ask 
questions as they viewed an example of each of the display and 
suggestion conditions and completed two hands-on examples.  
Following the training, analysts completed 24 timed analysis 
trials, with a break at the midway point.  They were instructed to 
complete each trial within two minutes and to give their best 
guess if they ran out of time.  A chime sounded 15 sec before the 
end and again at the two minute mark.  The alert, however, 
remained displayed until the analyst completed the task, even if it 
took longer then two minutes.  The purpose of imposing a two 
minute limit was to mimic the limited time constraints under 
which analysts often operate.  Pre-testing with analysts, who did 
not participate in the main study, confirmed that two minutes was 
realistic for completing the tasks.  

The task had three parts.  First the analyst determined the category 
of alert and its priority by selecting the alert category from a list of 
11 items and the priority from a list of 2 items (Low, Medium).  
We did not provide “High” as a priority choice, as we had no 
examples of high-priority alerts in our dataset, so no suggested 
explanation could be high-priority.  The analyst indicated their 



completion of this task by clicking on a button.  They then 
indicated their confidence in their answer by selecting from a 5-
point Likert scale ranging from “Very sure of my choice” to “Very 
unsure of my choice”. 

Analysts were asked to talk aloud during the trials about what 
they noticed in the displays and how they were solving the task.  
They were given an opportunity between trials to make additional 
comments and observations on the tasks and the user interface.  
We recorded audio from the entire session, with their permission.  
Individual sessions concluded with a survey in which analysts 
rated the value of the visual and tabular displays, suggestions and 
justifications, and provided general feedback and reflections on 
their experience.  After all the analysts had completed their 
individual sessions, they attended a two-hour focus group to 
discuss their impressions of the study. 

5.3 Research Variables 
We tested the research goals with a fully balanced parametric 
design in which we independently varied 4 variables:. 

• Display. Visual vs. tabular.   

• Recommendation. No suggestion vs. three suggestions vs. 
three suggestions with justifications.   

• Suggestion Accuracy. No correct suggestion vs. one correct 
suggestion among the three suggestions given. 

• Order. First set vs. second set.  The first 3 variables resulted 
in 12 unique conditions.  Each of these conditions was 
presented as a complete set in a random order.  The set of 
conditions was presented twice using a total of 24 unique 
items. 

As participants completed each trial, the NIMBLE software 
logged their response, the time to complete each response, and the 
analysts’ confidence level.  These log data were converted into 
our primary dependent measures of a) task time, b) accuracy1 of 
response and c) confidence level.  The data were analyzed using 
ANOVA repeated measures design. 

Quantitative measures from the trials and surveys were augmented 
by qualitative data from the audio recordings of each session and 
from the group debrief session at the end. 

6. STUDY RESULTS 

6.1 Quantitative findings 
Before reporting the results, it should be noted that experimental 
requirements as well as privacy restrictions limited what 
information we could display, which could have impaired 
decision-making.  While we provided a familiar environment and 
task, we were asking analysts to make decisions without access to 
typically available information such as event signature 
documentation, custom IDS event fields, web host URLs, and 
timestamps.  Additionally, the decision to have the analysts talk 

                                                                 
1 The term “accuracy” is used as a shorthand to refer to agreement 

between the category and priority selection by the analyst in the 
study and the designation given to the same alert in the 
historical record. 

aloud during the trials not only increased the overall time but 
probably also increased the variability of the response times.  And 
the two-minute limit, which was less time than many of these 
analysts took in their regular job, may have increased the error 
rate. 

6.1.1 Accuracy 
Figure 3 below shows percent accuracy under conditions of no 
suggestion, suggestion, and justification for the visual and tabular 
display over the first and second set of trials. 
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Figure 3: Percent Accuracy 

Overall, the analysts were slightly more accurate with the visual 
display (31%) compared with the tabular display (26%) (F1,17 = 
3.2, p < 0.10).  This effect was stronger in the second set of trials 
where accuracy for the visual display was 35% as compared with 
20% for the tabular display (F1,17 = 4.6, p < 0.05).   

Across both tabular and visual displays, there was no overall 
difference between the three level of recommendation (F2,34 = 1.0, 
p > 0.10).  However, for the visual display, justification improved 
accuracy while for the tabular display the justification reduced 
accuracy (F2,34 = 3.8, p < 0.05). 

6.1.2 Response Time 
The average response time overall was 85 seconds, well within the 
two minute period. 

The average response time across all conditions is shown in 
Figures 4a and 4b.  There was a significant main effect of order, 
with the second set taking less time on average than the first set 
(F1,17 = 9.5, p < 0.01).   



 

Figure 4a: Mean response time (secs) for first set of trials 

 

Figure 4b: Mean response time (secs) for second set of trials 

There was also a main effect of recommendation with 
justifications taking longer to process than suggestions which took 
longer than no suggestions (F2,34 = 6.7, p < 0.01).  Response times 
for the visual displays were slightly longer than for the tabular 
displays (F1,17 = 2.7, p = 0.12).   

6.1.3 Confidence 
There was no effect of any of the experimental conditions on 
confidence level.  The average confidence level was uniformly 
high across all conditions.  

6.1.4 Ratings 
After the timed trials were completed, each subject was asked to 
rate the helpfulness of the displays and suggestions for their task, 
on a scale from 1 (very unhelpful) to 5 (very helpful).  There was 
no significant difference in rating between the visual display 
(average rating = 3.47) and the tabular display (average rating = 
3.67) (related t-test = -0.54, df = 17, p > .10).   However, there 
was a small negative correlation between the two ratings (Pearson 
correlation = -0.38, p = 0.15) suggesting that analysts who liked 
one type of display did not like the other.  There were no 
correlations between the ratings and performance, either in terms 
of accuracy or response time.  In other words, analysts who gave 

higher ratings to the visual display were not more accurate nor 
faster than analysts who gave lower ratings to the visual display. 

Analysts found the justifications to be significantly more helpful 
(average rating = 3.67) than the suggestions on their own (average 
rating = 3.06) (related t-test = 2.265, df = 17, p < 0.05).   

There were no correlations between the individual differences 
(tenure, experience) and any of the ratings for display or 
suggestions, indicating that differences in ratings for visual or 
tabular was not a function of tenure or experience but of personal 
preference and perhaps differences in cognitive style.  

In summary, analysts were able to understand and manipulate our 
Interactive Incident Diagrams despite their novelty, showing 
improved accuracy with minimal speed degradation on the 
incident classification task.  Defensible recommendations in 
combination with the visual display were also associated with 
better accuracy. 

In the next section, we turn to the qualitative data to provide 
further explanation for how and why the visual display and the 
recommendations contributed to better performance. 

6.2 Qualitative Findings 

6.2.1 Display 

6.2.1.1 Visual Display 
The Interactive Incident Diagram (IID) provides a machine-
centric “picture” of event activity in a way that highlights many of 
the critical event relationships between source and destination 
machines; these relationships may be obscured in the tabular 
display.  One of the unanticipated strengths of the visual diagram 
was its ability not only to represent the kind of network map some 
analysts reported mentally configuring, but also to support 
reasoning in new ways about familiar information. 

“Graphically seeing the strays. You tended to see something that 
obviously clustered, and then you’d see other stuff out there and 
think, well, what is that? Then there’s one shot, off to the corner, 
and you think, who is that and why didn’t we see that? From 
looking at the tabular list, I saw it, but it was much quicker 
visually. The oddball stuff shows up a little better visually than it 
does with the table of events. That would be very useful, I think.” 

Analysts pointed out particular features that they liked in the 
visual display, for instance: 

“It was nice to see the subnet view and the ranges” 

“The color coding, that's definitely helpful” 

“As humans we are visual so when I am looking at a big list I am 
actually in some ways building that grid pattern in my mind. I 
have to visualize flow, direction, signatures” 

Many analysts liked the visual displays, especially those who self-
identified as visual thinkers.  However, as noted earlier in 
reporting the ratings, there seemed to be clear individual 
differences with some people preferring the visual and others 
preferring the tabular.  For instance, a person who preferred the 
tabular layout said about the visual design: 

“I like the idea… But in back and forth traffic it [default layout] 
makes something look like a spoke – hub and spoke – but leads me 



to the wrong conclusion at first glance if we are doing it quickly. 
There is no way of showing a 1:1 relationship there”. 

In summary: 

• Analysts appreciated the system’s clustering of events and 
machines.   

• “Strays” or anomalies lost in large data sets stand out in the 
diagrams 

• Some visual cues were considered insufficiently expressive, 
such as the use of subtle line thickness differences to 
represent event volume 

Some IID manipulations presented challenges to efficient and 
effective exploration of layers of visual information.  Enhancing 
the ease of graphical manipulations in the IID and supporting 
more efficient and rich functionality should amplify the benefits 
of working with a visual representation, improving both 
performance time and data exploration opportunities.  In 
summary: 

• Difficulties with zooming and panning the display slowed 
scanning and search for information and interfered with 
concurrent viewing of “big picture” and asset detail 

• Node and edge distribution and font sizes were not optimized 
with zoom, amplifying the loss of context when zooming for 
asset detail 

• Some manipulations were unfamiliar and tricky to control 
(e.g. zooming too far upon scrolling, difficulty centering 
zoom on a specific area) 

• Making some information only available though tooltips 
slowed analysts down 

6.2.1.2 Tabular Display 
Analysts valued having access to “raw” data without any 
predetermined clustering or analysis.   

“I felt more control in the tabular. For me, the graphic could have 
been more useful, but I couldn’t control what was going on in the 
display.” 

The ability to view events in temporal sequence in the tabular 
format was also considered relevant for certain alert cases.   

In summary: 

• Some analysts express a greater sense of “control” and ability 
to manage attention by sorting columns and focusing on 
clusters of signatures 

• Sorting also supported rapid identification of “noise” and 
“junk signatures” 

• Ease in scanning signature names represented a significant 
advantage in the tabular interface 

• Scrolling through sorted lists of events, analysts were better 
able to “get a feel” for total relative volumes of different 
signatures 

6.2.2 Suggestions and Justifications 
Because suggestion accuracy was one of our independent 
variables, and because we always offered exactly three suggested 
explanations, the presented suggestions were at times very weak 
matches to the viewed alert.  While the system was able to 
illustrate these weak relationships, the analogies could be 
perplexing or unintelligible to analysts.  Some analysts were also 

confused about whether the justification showed a single 
historical alert or a generalization of several previous alerts.  
Further, analysts had difficulty translating the color coding, often 
forgetting the meaning of each shade of highlighting.  As one 
analyst said, 

“I don't think I am trained in using the colors yet” 

Analysts strongly value self-sufficiency, independent analysis, and 
individual judgment.  Most participants in the study expressed a 
strong disinclination to follow a system-generated suggestion 
without confirming a diagnosis for themselves.  There was explicit 
resistance to the idea of trusting in or relying on system 
interpretation alone.  

“I would look at the suggestions, and if it didn’t match my gut 
feeling, I would simply discard the suggestion. It became 
interesting when there was a justification, because then I could 
look, why are you suggesting this? It might be something I hadn’t 
looked at or hadn’t recognized. It might be completely bogus, but 
then I would see the reasoning, why are you suggesting this? 
What may I have missed? That’s where the suggestions became 
valuable. If it matched my gut feeling then I would go for that 
option. So, the suggestion by itself was sort of worthless to me, 
whatever data was behind it. Only when there was a justification 
added, I had the intention to look at it and see, why did it come to 
this suggestion?” 

Suggestions without justifications (unless they were of high 
statistical confidence) appeared to provide little support for 
analysts.   

“The percentages never seemed really strong. If something came 
up and said 90% I had some comfort knowing it was there … but 
when it is coming up and saying things in 20s and 30s or 10s and 
20s doesn't really mean much to me.  That's no better than 
random.” 

Analysis of alert activity appears to occur in three phases: 

• Discovery – becoming oriented, scanning, forming a mental 
model of the information available 

• Diagnosis – reasoning about the relevance of different pieces 
of information, forming a hypothesis 

• Confirmation – coming to a conclusion 

Suggestions with justifications offered support, in particular, for 
the Discovery and Confirmation phases of analysis.  Highlighting 
those features of the current activity which corresponded to 
features of previous activity served to support attention 
management in both the tabular and visual display modes, making 
salient for analysts the key information in the display.   

In addition, after analysts had developed a hypothesis concerning 
the activity, they valued the suggestions with justifications as 
providing a “second set of eyes”.  When suggestions and 
justifications agreed with analyst diagnosis and reasoning, they 
provided confirmation, and when suggestions differed from 
analyst diagnosis, analysts often viewed justifications as 
stimulating consideration of potential alternatives. 



7. DISCUSSION 
In this section we consider some of the broader implications of 
our findings for future design of displays and recommendations 
for network intrusion tasks. 

7.1 Displays 
The complementary strengths of the visual and tabular displays 
suggest that analysts should have simultaneous access to both.  
This was something several analysts asked for directly, with one 
describing the value of multiple ways to view the same situation 
by stating: 

“We might home in on one signature and automatically dismiss 
it, because we see it so often. A lot of our work is repetitive. You 
get very fast as you do it a lot, so those anomalies might slip by. I 
think anything like the visual/tabular thing that breaks our 
thought pattern up is useful.” 

Enhancing mechanisms for integration of views would support 
this need to explore information dynamically from different 
perspectives.  As analysts focus attention on entities and 
relationships of interest (i.e. nodes and edges within the graphical 
display), they want these to serve as the mechanism through 
which to shift directly from one display mode to the other.  They 
felt it would be insufficient simply to toggle between displays.  
Rather, analysts want to affect one by manipulating the other, for 
example, by selecting an arc to view the corresponding table rows, 
or filtering and selecting sections of a table to display as an 
interactive diagram.  Advanced filtering capabilities may include a 
faceted interface for event exploration, which would additionally 
provide useful summary statistics for the viewed events, such as 
event counts by signature. [10] 

Analysts call upon a wide range of information to inform their 
decision-making that extends beyond event signatures and the 
identity of source and destination machines.  For privacy reasons 
and to maintain equality between the graphic and tabular displays 
we were restricted in what information could be displayed.  The 
analysts, however, were quite vocal about what additional 
information they were accustomed to or desirous of, which 
included: 

• Asset Information such as URLs, identification of proxy 
machines, and the result of queries for geolocation and 
WHOIS records. 

• Time Information including the temporal sequence and pace 
of events, which might be displayed on a timeline that could 
also be used as a user control to filter events by temporal 
regions, or to request a visual playback of the sequence of 
events. 

• History: Ability to do research on machines and alerts is 
critical to contextualizing current activity. 

• Signature Documentation via a lookup feature to find 
signature definitions, classification, severity, and known false 
positives. 

Analysts reported that lack of contextualizing details of this nature 
would make sophisticated analysis of the character and severity of 
a threat, including the dismissal of false positives, especially 
challenging.  

We believe the IID could use color and region shading more 
effectively.  The red font we used to indicate internal machines 
was chosen for consistency with the analysts’ current environment 
but can be problematic for color-blind users.  A continuous 
contour that indicated the machines that are internal to the 
protected network could help analysts quickly identify internal vs. 
external activity, and would provide a place to indicate available 
information about network hardware such as firewalls and the 
position of the source sensor(s) for events. 

Analysts generally liked the IID’s default layout algorithm, 
though we could improve layout for alerts that are particularly 
simple or complex.  A bird’s eye view may be useful when 
zoomed in to see detailed asset information and provide context 
for the current viewport position relative to the entire diagram.  
Conversely, a fish eye lens effect may be useful to allow detailed 
asset information to be visible even when zoomed out.  Some 
analysts requested scrollbars in addition to the IID’s panning 
mechanism when the current viewport could not encompass the 
entire diagram.  It may be advantageous to automatically zoom the 
IID display in some cases, such as when new events are 
incorporated into a diagram, or upon selection of a suggested 
explanation.  If more advanced navigation capabilities are 
provided, it would be useful to have a visual history mechanism to 
allow the analyst to quickly return to a previous diagram state, 
which would provide the additional benefit of allowing future 
analysts to recreate the analytical steps taken during the original 
analysis. [9] 

7.2 Suggestions and Justifications 
The current approach to representing system reasoning by means 
of highlighting corresponding attributes is useful.  However, 
analysts expressed the wish to have reasoning made more 
expressive with the ability to toggle between highlighting 
matching attributes and highlighting anomalies or discrepancies 
against the model.  Often, those elements of an alert inconsistent 
with a typical or characteristic case may be especially relevant for 
diagnosis. 

Match scores provided the quantification of degree of similarity 
used by the system to identify the most similar cases in the 
knowledgebase.  We were interested in discovering whether 
presenting match score values would influence analysts’ 
evaluation of suggestions and justifications.  However, these 
model similarity scores were particularly difficult for analysts to 
interpret.  Instead, analysts want and expect something more like a 
confidence score, how accurate this suggestion has been in the 
past, or how often it has been previously accepted.  If the 
recommendations are derived from generalizations of multiple 
incidents, they expect an indication of how robust the model is, 
how many incident diagnoses contributed to it and the detailed 
context around those incidents, in order to confirm the correctness 
of the generalization. As one analyst said: 

"We're assuming that the data contributing into the suggestion 
presented is going to stay static, and in reality, some of those 
signatures can go from being false positives for a long time, 
making a pattern of commented security incident, and all of a 
sudden we get an update and now it's accurate. So, you can't base 
the learning on that previous data." 

 



Analysts also wanted the ability to record comments concerning 
unique or important characteristics of an incident to help future 
analysis of similar situations.  Several participants felt that the 
identity of the analyst working on a previous case was a strong 
determinant of the previous diagnosis’ trustworthiness.   
However, it may be that as the visual language for exposing 
system reasoning becomes more expressive it will be able to 
convey enough detail that analysts shift away from their current 
focus on the identity and trustworthiness of the analysts behind 
the suggestions and become willing to evaluate the sophistication 
and character of the system reasoning itself. 

There are several opportunities for integrating the environment we 
have designed for online analysis with the environments used for 
research and development tasks, global trend analysis, and other 
offline threat assessment.  We interviewed several threat engineers 
who suggested that a variation on the IID might be useful to 
explicitly construct models to serve as the basis for 
recommendations, or to view rules generalized from analyst 
activity in order to vet candidates for fully automatic alert 
processing. 

8. CONCLUSION 
We have presented a two-fold approach to improving the 
performance of online cybersecurity analysts, combining a novel 
visualization of alert information with defensible incident 
classification recommendations generated from historical 
incidents of a similar nature.  We evaluated the practicality of this 
approach by creating the NIMBLE prototype environment and 
testing it in a controlled empirical study with 18 professional 
analysts, leveraging alert data gathered from operational 
monitoring systems. 

Our test framework and assigned task did not exactly replicate 
analysts' current working environment, but the participants felt 
they were a reasonable approximation.  Analysts were able to 
understand and manipulate our Interactive Incident Diagrams with 
very little training, showing improved accuracy on an incident 
classification task with minimal speed degradation and no impact 
on confidence.  It was not obvious that visualizing correlated 
event information would have any positive effect on performance; 
many of the analysts participating in our study had years of 
experience interpreting IDS event information presented in a 
tabular format. 

We have discussed a number of possible improvements to 
NIMBLE's interactive visual display and recommendation 
features, such as offering multiple linked representations of alert 
information (e.g. visual, tabular, timeline, geographical) with 
integrated mechanisms for querying and filtering, or improving 
mechanisms for conveying recommendation relevance.  It would 
be useful to revisit our findings with a refined NIMBLE user 
experience that incorporates alternate information displays or new 
methods for visualizing justifications. 

There are also many opportunities for future study of interactive 
visualizations and defensible recommendations in other aspects of 
the online analysis vigilance task.  Several analysts commented 
that the Interactive Incident Diagram would be helpful in training 
new analysts, or in communicating problems to customer 
stakeholders.  We would like to further explore this notion of IIDs 
as boundary objects in synchronous and asynchronous 

collaboration tasks.  Defensible recommendations may be useful 
not only for incident classification but also for other actions 
within the environment, such as suggesting which queries to 
execute or which remedial measures to propose.  By attaching 
more explicit user metadata to recorded interactions with the 
environment it may also be possible to detect and compensate for 
analyst fatigue, or to automatically infer analysts’ areas of 
expertise for more intelligent distribution of incoming alerts. 

We found that analysts have a significant preference for 
recommendations that include justifications, which has 
repercussions for the types of machine learning algorithms that are 
appropriate for this use case.  There are a variety of other factors 
whose impact on the usefulness of system recommendations bears 
exploration.  Chief among these is the underlying accuracy of the 
recommendation engine, with its corresponding impact on analyst 
trust. 

By their very nature, vigilance tasks tend to arise in the most 
critical of environments.  These environments can be, with good 
reason, conservative about risk and cautious about change.  We 
take this as a mandate for both user-centered design and the 
evaluation and validation of proposed improvements through both 
qualitative and quantitative user studies.  Analysts' foremost 
concern is the successful completion of their mission, and they are 
well aware of the increasing sophistication and consequences of 
malicious activity.  We found strong interest in both visualization 
and defensible recommendations as approaches for improving 
cybersecurity incident management, and we have high hopes that 
these techniques will enable analysts to respond to future threats 
more nimbly. 
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