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ABSTRACT

Analysts engaged in real-time monitoring of cybeusity
incidents must quickly and accurately respond éstalgenerated
by intrusion detection systems. We investigatedo tw
complementary approaches to improving analyst pedace on
this vigilance task: a graph-based visualizatiocafelated IDS
output and defensible recommendations based on ingach
learning from historical analyst behavior. We ¢elsbur approach
with 18 professional cybersecurity analysts usingratotype
environment in which we compared the visualizatieith a
conventional tabular display, and the defensibé®mamendations
with limited or no recommendations. Quantitatiesults showed
improved analyst accuracy with the visual displayd athe
defensible recommendations. Additional qualitatilaa from a
“talk aloud” protocol illustrated the role of digys and
recommendations in analysts’ decision-making praces
Implications for the design of future online an&@ysnvironments
are discussed.
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Design, Security, Human Factors.
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1. INTRODUCTION

Vigilance tasks are those that require sustainteatidn, in which
participants typically monitor frequent, repetitivdgnals for
uncommon or unpredictable events, and react apiptefyr when
such events occur. [22] In the cybersecurity domaigilance
tasks are epitomized by the work of “online” antdyia a Security
Operations Center (SOC), who engage in real-timaitmong
and investigation of computer and network healththwa
particular emphasis on the detection and triagepblems
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caused by malicious people and code.

Online analysts have a difficult job, characteribsdthe need to
integrate specialized technical knowledge with egntal

knowledge under severe time constraints, often vathlittle or

extraneous information, an abundance of false aarand
adversaries actively seeking to prevent or misleaxlysis.
Worse still, failure in this task can have directdasevere
consequences for the financial health and reputatighe injured
party. For example, it is estimated that computaises alone
cost businesses billions of dollars each year. [Firthermore,
the problem has been getting worse, straining ahabnd
organizational resources. [8]

Our goal is to help online analysts complete thiasks more
quickly and accurately. We have investigated tamglementary
approaches to improving analyst performance: aeraative

graph-based visualization of correlated output frémrusion

Detection Systems (IDS) and defensible incidenegatization

recommendations based on machine learning fromorigat

analyst behavior. Defensible recommendationslarset that the
system can justify or explain, supporting analystapacity to
understand and evaluate the relevance of the reeonfations.
Both incident visualization and categorization maowendations
are driven from a graph-structured model created dach

incident, which is initialized from raw event datad augmented
with contextual and asset information.

In a managed security environment, each onlineyanahay be
monitoring dozens or hundreds of protected netwwiikis only a
few minutes to devote to the analysis of a typadaim. This time
constraint suggests different design criteria fasualizations
targeting online use. Visualizations for onlinealysis should
emphasize simple, intuitive representations rathéran
information density. The salience of visual featuishould be
determined by their utility in diagnosis and resgp@n
Manipulations of the visualization should be faeted natural.

We believe that our incident visualization, which vefer to as an
"Interactive Incident Diagram” (IID), could have \ariety of

advantages over the tabular display of IDS eveffésenl by many
security tools. In this paper, we study the impafca visual or
tabular display on analyst performance. We alsbtte interplay
of display method with the presence of incidentssification

recommendations and the ability to visualize thestay's

justifications for its recommendations.

The remainder of this paper is organized as follov&ection 2
discusses related work. Section 3 describes theatipns of one
commercial SOC and data we obtained from their prtdn
systems.  Section 4 describes a prototype envirohmee
constructed to test our Interactive Incident Diaggaand the



effects of combining them with defensible recomnatimhs.
Section 5 describes the design of a study with gzsibnal
cybersecurity analysts; Section 6 presents thaly&uresults.
Section 7 discusses analyst feedback on the desigour
environment. We conclude with suggestions for reitwork in
Section 8.

2. RELATED WORK

Komlodi et al. [13] described three phases of wiorkntrusion
detection: Monitoring, Analysis, and Response, fifigng
particular visualization needs for each. In thealsis phase,
which we are primarily concerned with, analystsuieg powerful
interactive visualizations that fuse informatioarfr disparate data
sources and allow analysts to view data at multipkels of
detail. The authors also emphasized the importahgeounding
cybersecurity visualizations in analyst needs aradidating
proposed visualizations through user studies.

Goodall [7] applied this user-centered design aa@nan a study
comparing user performance with two tools for analy network
packet capture data, one based on visualizatiasthanbased on
a textual/tabular display. The study involved bgtmantitative
and qualitative methods, finding that users of TNihe

visualization tool, showed increased accuracy oii-defined

tasks as well as a clear preference for the visuatface. Our
goal is also to compare a visualization interfadth vene more
commonly used, however we focus on visualizingelated IDS
output rather than network traffic. The Goodaludst was

conducted with novice users; our participants wemmain

experts, most with over five years of professiangderience.

A similar study by Thompson et al. [19] comparederus
performance on an intrusion detection task whengusommand
line tools versus a visualization tool. Task perfance was
generally better with the command line tools; tlasks were
completed more quickly and users were more confidctertheir
analysis. Although participants preferred the camdhline tools
overall, they found several aspects of the visntdrface useful,
such as the ability to see overall network actityd quickly
identify anomalous behavior. As in [7], the primaisualization
was of network traffic information rather than adated IDS
output, and the participants were mostly students.

There have been a number of visualizations desigoedDS
output. Koike and Ohno’s SnortView used simple rgetsic
shapes to indicate protocol and severity in a timedsional grid
relating source IP address to destination IP addaed time. [12]
IDS RainStorm by Abdullah et al. presented a zodenatierface
allowing the display of a full day's worth of IDSents across a
large network. [1] VisAlert by Livnat et al. used radial
visualization with smoothly animated transitionshielp analysts
visually identify IDS event patterns in time, typend network
location. [15] Although both IDS RainStorm and Riert were
tested with professional users this evaluation wad include
quantitative measures of performance.

Artificial Intelligence (Al) techniques have longén applied to
almost every phase of real-time cybersecurity iacidrocessing,
from initial traffic classification to automatedc@mmendations
on incident disposition. Particularly relevant ttas work are
systems where analysts’ judgments feed future difn
recommendations. The work by Pietraszek on thepihda
Learner for Alert Classification (ALAC) system istable. [17]

ALAC learned from analyst classifications which I@8ents are
true positives. This was accomplished through nbmsive
methods, by seeing which events were included é sbcurity
incident tickets the analysts created. The autedhat
classifications could be used as suggestions feratmalyst, or
used to automatically ignore events classified asef positives
with high confidence. ALAC used a modified ruledirction
algorithm, allowing for the potential interpretatiand review of
generalized patterns by subject matter experts.

Recommendations from Al systems are sometimes guzoied
by system-generated explanations for the recomntiemda
which may serve multiple purposes. Among othemghj
explanations can increase understanding and acweEptaf
recommendations [11], support faster and more atewtecision
making [20][4], and enhance trust in the systenomamendations
[18]. Vig et al. [21] distinguish explanations fingjustifications.
Justifications may express reasoning in the forma ebnceptual
model significantly different from the underlyingagommendation
mechanism, but should serve to support user corapsétn and
reasoning about system behavior.

3. BACKGROUND
3.1 Managed Security Services

We worked with a managed security provider thagrsfa variety
of cybersecurity services, including round-the-klononitoring

and management of security devices on customer onlesw
Online analysts in globally distributed SOCs evtgueeal-time

data from intrusion detection systems, systemdyicaltegorizing

and prioritizing threats. Raw events from multip@Ses are
funneled through an Al engine that correlates #ita dtreams and
identifies the situations of greatest concern, fliog a

significant reduction of what would otherwise beemwhelming

data streams. Higher level alerts from the Al aystare

distributed to online analysts for handling, whichn include

reviewing raw event and log details or examining tharacter of
involved devices by viewing customer-provided asseita,

historical activity, presence on blacklists, or thsults of queries
such as geolocation or WHOIS lookups.

Analysts use a ticketing system to track securitydents. Before
creating a new ticket for an incident, analystsl wheck for
existing tickets that the alert should be assodiatéth, or for

special instructions from customers that would cffeéhe

disposition of the alert. The analyst assigns tegmay and
priority to newly created tickets. Customers apéfied based on
threat severity, customer preference, and the lefekervice
contracted. Attacks with severe repercussions mesylt in

phoning or paging a customer representative. Loprésrity

problems may result in email notification only. ns® alerts are
the result of authorized activity or of malicioustigity that the
targeted assets are immune to; these types o$ aletlogged for
accountability and can be reviewed by the custormet,do not
result in notification.

In rare cases, the online analysts from the managedirity
provider may be authorized to take direct remeadsions on the
protected network, such as updating firewall pebci In most
cases, however, the online analyst is limited tw#fication and
advisory role.



3.2 Data Collection

We worked with threat engineers from the managezlritg
provider to extract data from production log filesd databases.
We received four types of information: alerts, @geasset details,
and analyst ratings. The threat engineers seledtede
undisclosed customers they felt were reasonabheseptative of
their customer base. These particular customers also chosen
because they all used the same type of IDS hardweairing
that attack signatures would be consistent withid &etween
customers. Information was retrieved for eachhef tustomers
for an eight day period for which the threat engisebelieved
there had been typical levels of activity. Thesfbtem created a
total of 164 alerts for these customers during tihee period.
Data from the Al system was merged with data fromttcketing
system, allowing us to see how each alert was kdnby the
assigned analyst. SOC managers provided a talkethé job
role and management-assessed skill level for edcthe 29
analysts who handled an alert in our dataset.

There were a total of seven hardware sensors athesshree
customers. From the collected alerts, we extraatbst of all IP

addresses that had been either a source or a atastirfor an

alert. This list was used to filter the raw stodeda from each of
the seven sensors to a manageable level. Filter@sgequired to
avoid disk quota and processing time limits. And&rd set of
fields was collected from any event whose sourcdestination
was one of the identified IP addresses. This tegduln a

collection of 2,869,108 raw events.

For each of the three customers, we extracted soméne

available hardware asset information. This infdioramay have
been entered by the customer through a web-bastal ppadded
by an analyst based on customer feedback. Infasméor 106

critical assets was available. The asset datdsfiere usually
semi-structured text. For example, some infornmatiegarding
critical open ports was given as a humber, somengas a well-
known protocol abbreviation such as “HTTP”. We m&dded
some of these issues through normalization durirgst-p
processing for use in our knowledgebase.

One of our primary concerns was ensuring that tlleacted data
would not compromise the identity, security, oribess interests
of the customers it was taken from.

Automatic anonymization of plain text fields suck analysts’
notes or remediation recommendations was infeasguethese
fields were not collected. Analyst names, alegniifiers, and
ticket identifiers were replaced with freshly miatenumeric
identifiers in a consistent manner.

IP addresses across the dataset were anonymizeglthsi prefix-
preserving Crypto-PAn method. [6] The anonymizativas
applied using a consistent encryption key, ensutiaga given IP
address would consistently map to the same out@itiev
regardless of which data source it was extractednfr The
anonymization code was executed by threat enginedrs
disposed of the encryption key after use; reseascmever
received customer IP address values.

IP address anonymization had several side effeEtsring our
study we could not provide analysts with query @i such as
geolocation or WHOIS lookups, as these would haterned
random values. We did not attempt to preserveiapaddresses

such as those used for loopback, multicast, orapriuse, which
may have misled analysts. We also saw instancesavthe initial

octet of the anonymized address was either a vnelizvk or

unlikely value, which may have caused analystsetonbre or less
concerned about an alert than they otherwise woeld

4. NIMBLE

The name of our prototype cybersecurity environneilMBLE

(Network Intrusion Management Benefiting from Lesdn
Expertise). The NIMBLE software reads correlatéertadata
from an input file, creates a semantic model fochealert,
matches each alert model against historical moukelgrder to
create recommendations, and displays alerts t@miaéyst either
visually or as tables of data.

4.1 Semantic Summarization

The Al alerts are triggered from aggregated evemis,they do

not contain events. Analysts use the informatiorihie alert to
dig for more information in correlated events fromtwork and

host IDSes, firewall and proxy logs, etc. Our gatld data was
limited to network IDS events. Normally, an analysould be

able to request e.g. all of the IDS events thablwved two

machines in the previous four hours. Howeverhim ¢ontext of
our study, in which we were asking analysts to md&eisions

under severe time constraints, we did not wanihtmdiuce the
variability in timing that a querying mechanism Jduhave

caused. Instead, we needed to choose a correkttiategy that
would select a fixed set of events from our datésetonnect to
each alert. The correlation strategy had to balarmmpeting
needs. If the strategy selected too many evdrgsptoblem

would be too hard and the analysts would not be ttbtomplete
the assigned task in the time provided. If thatety selected too
few events there might be too little informatiom fbe analyst to
make an assessment, or the problem would be tgo aad the

differences between analyst performances on theiousr
conditions could be obscured by differences intieadime.

We investigated a variety of correlation strategiefore choosing
one that yielded problems of appropriate complexityThe

correlation strategy we ultimately chose for useum study only
included events from a relatively short time winddwom the

time of the first event triggering an alert conglitito the time the
alert was created. Events within that time windinvat did not
involve any machine in the alert information wereleded. This
strategy did not partner any event with more thae alert. The
mean number of events per alert was 106c7% 179.88), with a
minimum and mode of 1 event and a maximum of 863.

Semantic summarization of the set of events cdeglavith an
alert represents the foundation for both our vigatbn and the
NIMBLE learning and suggestion mechanism. Our gial
constructing a semantic summary is to present tiadyst with a
condensed version of the information that highbgtite salient
aspects of the event set. These condensed refases are also
the basis by which the NIMBLE learning mechanismstoucts
models that are matched against future semantionsuies to
derive suggestions.

The semantic summarization algorithm clusters aofet¢vents
into a set of partitions. Each partition can barabterized by a
set of source machines, a set of destination mashand a set of



signatures with associated counts. The partitigmifees that
each source has communicated with each destindiyoeach
signature at least once. The counts associatédeaith signature
represent the total number of events in the pamtitivith that
signature. The summarization algorithm abstractsyathe
distribution of events between the sources andirdggins in a
partition and the timing of the events. The sunimadion process
partitions the events in two phases. In the fitsise, events are
grouped into partitions with the same source arddimition. As
the communication between two machines may ofteultren
hundreds of events, often with just one or a feenésignatures
involved, this can immediately result in a vastuetibn in the
bulk of information to be dealt with. The secorfthpe seeks to
merge partitions that can be merged without vintatpartition
semantics. In order to make that determinationmuet be aware
of the predecessors and successors of each maahohée event
signatures by which these predecessors and sucsesse
connected. Partitions can be merged if they nteetfdllowing
criteria:

1. Both partitions have the same set of signaturf@ounts are
irrelevant for merging purposes.)

2. The sources of both partitions have the samdepessors by
the same signatures.

3. The sources of both partitions have the sameessors by the
same signatures.

4. The destinations of both partitions have theesaotcessors by
the same signatures.

5. The destinations of both partitions have theespnedecessors
by the same signatures.

When partitions are merged, their source, destinatiand
signature sets are combined, and the signature txofor
individual signatures are totaled.

The set of partitions forms the basis for a grapbetured

semantic model of the alert, which is representederms of a
modifiable OWL ontology [2] and persisted to a sthr
knowledgebase. Nodes within the graph represetdlagical

entities or literal values; edges represent claiafs binary

relationships between entities or between an eafity a literal
value. The construction process supplements thersic alert
model with any information from the shared knowleblgse
concerning the individual machines described. Tihfigrmation

could include indications of manufacturer, opemgtisystem,
network location, geographic location, owner, impoce,

installed applications and known services, etc.

4.2 Generating Defensible Recommendations
To make incident classification recommendationsMBILE
calculates the similarity between the model foriveeig alert and
historical alert models. The scoring algorithmbiased on a
general purpose semantic matching algorithm, whitémpts to
find the least-cost correspondence between two rsignaodels.
This is a classic inexact graph matching probléftile there are
many sophisticated approaches to doing this kindaithing (see
for example [16]), for the NIMBLE prototype we usadsimple
best-first search of the space of possible cormdpaces between
the claims. Our matching procedure is asymmetWée wish to

treat one model as a template graph, for which weks
correspondences in the other model's matching graphus a
smaller template model may find a good match eméedd the
context of a larger matching model, and our systeith have
detected a target attack embedded within the comtea larger
alert. As our cybersecurity ontology does not tsationship
hierarchies, correspondences only need to be cenesicbetween
claims involving identical properties. The costndtion for
matching corresponding claims depends on the sunthef
ontological distance between unequal correspondmgce and
destination entities, which itself is determinedthg percentage
of classes in the ancestry of the template etitdy are not found
in the ancestry of the matching entity. The seéiralis the set of
correspondences which result in the lowest cosis tichieving
the highest degree of match. The reported matohes@nges
from O to 1.0, representing the degree of matchddoetween the
two semantic graphs.

One of the benefits of this approach to recommeéonsts that it
is possible for the system to provide a justificatifor the
suggestions that it makes. Many machine learngggaaches do
not share this property. As part of the similadglculation, we
identify how the features of the current alert maz®respond to
the features of a similar historical model, andoag visualize this
alignment to analysts curious about the reasonielind the
suggestion.

Although we used this simple case-based reasormppgoach to
generate incident classification recommendationmsufe in our
study, our ontology-based models can also be agtrégand
generalized to form a more succinct set of abstrades.
Justifications remain possible with generalizeésul

4.3 Interactive Incident Diagrams

We created two custom versions of the NIMBLE uségrface for
use in our study with cybersecurity analysts. @agsion was
used in timed trials with varying experimental ciioths, the
other allowed exploratory interaction with our Irstetive Incident
Diagrams. The exploratory interface is shown igufé 1. The
visual styling and interaction capabilities of tHE®D were
influenced by feedback from analysts on early mpsku

The diagrams are built using the zoomable scenehgra
capabilities of the Piccolo2D library, which alloisr multiple
representations of scene elements at different zdewels,
smoothly animated zooms and transitions, and mithractivity
with embedded widgets. [3]

The IID visualization is a graph in which each namte“card”

represents one or more machines, and the edgesatmnnodes
represent sets of IDS signatures involving the ected
machines. [ID graphs are directly constructed ftbe semantic
summary model of an alert. Fundamental user ictierss

include manual or automatic selection and arrangérog cards
and smoothly zooming and moving the canvas to stands at
varying levels of detail. The visual representataf a card can
change depending on the scale at which it is beieged. For
example, card text and icon decorators only appésn the
zoom level is sufficient for legibility.

Single Machine cards are labeled with an IP addréisthe card
represents an internal machine — one that is patteoprotected
network — the IP address will be colored red. Heé tcard
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Figure 1: Screenshat of 11D Exploration Console

represents a machine that is a critical assetRtegldress will be
shown in bold. These conventions were chosen tfatéiar to
study participants. We considered using realigtiages of the
relevant hardware for Single Machine cards but thisset
information was typically unavailable in our colied data.

Multiple Machine cards contain an interactive talldget where
each row corresponds to a machine. The table slloow

selection, sorting by column, and vertical scrajlias necessary.

Multiple Machine cards are labeled to indicate tdoenmon IP
address prefix and count of the machines repredente

Cards have a colored handle that allows for easgging for
manual repositioning. Single Machine cards alse the handle
area to show icons for operating system, primarychime
function, or other important information that may &vailable. If
the display is sufficiently zoomed in, Single Mauhi cards
display other attributes such as geographic looaadministrator,
manufacturer, etc. as structured text. Cards ttete been
selected by an analyst are indicated by surrounelirofp card with
a translucent cyan glow.

Cards are connected with labeled edges that iredié2$% event
signatures and counts. The width of the edge imdication of
the total number of events it represents. Thehwisltscaled by
the natural logarithm of the event count, howevartigimum size
is enforced to ensure legibility of the label, whis drawn inside
the edge.

Although the 1ID is capable of using many differelatyout
algorithms to position cards, our default layowgasithm places
machines that were the source of an event on thsitke of the
diagram, those that were a destination on the riigh of the

diagram, and those that were both a source arebtndtion in
the center. The position of cards was adjustdartio overlap of
either cards or edges.

In order to keep the diagram simple, some inforomaguch as
TCP port usage is only shown as a tooltip, disglayen the
analyst hovers over an element of the diagram. elOthouse
gestures and control keys provide features susklastion of one

or more cards to scope subsequent commands, zoooring
panning the canvas, and organization of cards reithe
geometrically, e.g. into grids, circles, stacks,etc by attributes
such as operating system or importance.

NIMBLE provides suggested incident categorizatiors

“explanations” in a panel next to the alert displayvhen an
explanation is selected from the list of suggestqulanations, the
IID highlights the portions of the currently viewealert that
match that explanation. The degree of match igatedd using
three shades of orange. The colors mean sligfffgrent things
for cards and edges, but in both cases the dankeorange the
closer the match.

For the machine cards:
Dark Orange Exactly the same machines.

Medium OrangeNot the same machines, but the same clustering,
i.e. a single machine mapped to a single machimemany
machines mapped to many machines.

Light Orange Single machines mapping to multiple machines or
vice-versa.

For the edges:



Dark Orange Exactly the same set of signatures (but countg ma The bottom right of the display contained a timkowing the

vary).
Medium OrangeSome overlap in the set of signatures.

Light Orange No overlap in the actual signatures, but theesgst
interprets something about the event activity asesponding to
the template model. (E.g. could have been the S&@ie port in

both cases.)

Hovering over an orange card or edge would shovodtip
detailing the differences between the currentlyveié alert and
the historical alert that was the basis for th@mamendation.

In the NIMBLE IID exploration interface, we triedvariation on
the justification highlighting used during the sguéh which we
drew further attention to the matching portion bgtliD by
shading the background region corresponding tactmrex hull
of the matched nodes and edges. This region woptthte as
nodes were repositioned. Some analysts prefehisddndering;
others found the possible presence of non-matahdaigs on top
of the shaded region confusing. One possible irgreent would
be to use a Bubble Set method to avoid shadingntdehon-
matching nodes. [5] This future mechanism couldubed for
emphasizing other groups of cards on demand, fample, when
the analyst chooses to organize cards by operatystem the
added background shading could emphasize diffdegnilies of
operating systems.

] NIMBLE

Figure 2: Screenshot of Tabular Display in Study Console

Figure 2 shows a screenshot of the NIMBLE userfate used
in timed trials with analysts. The primary arealw# display was
filled with either the Interactive Incident Diagrdor the alert or a
table showing correlated IDS event details fordlest. The table
of events showed a fixed number and order of srtablumns,
including the event sequence number, signaturerceouP
address, destination IP address, source port, ndéisth port,
source asset information, and destination assetnmation (if
any). When justifications were available, selegta suggested
explanation would shade the background of tablds cel a
manner analogous to the IID. Summary informatiochsas the
duration of the alert and the total number of ideld events was
displayed in both cases.

time remaining in the trial, a drop-down list foelexcting the
incident category for the alert, a drop-down list §electing the
priority for the alert, and a “Commit Choice” buttthat allowed
the analyst to signal completion of the trial. \Be¢n each trial,
the user interface would enter a state in whiclalea was shown.
A large “Next Problem” button allowed the analystdtart the
next trial when ready.

STUDY

Our user study tested the NIMBLE environment withfpssional
cybersecurity analysts. The purpose of this study to examine
analysts’ response to NIMBLE's visual display, its
recommendation capabilities, and the visual medmanfor
exposing system reasoning. Specific goals ofghidy included:

¢ Understand whether and how representing informaitioa
visual display might affect analysts’ comprehensioh
activity and performance on analysis tasks, retatiy the
more conventional tabular format for displaying suc
information.

¢« Determine how analysts might use and benefit frgatesn-
generated recommendations based on machine ledromg
the disposition of similar historical alerts, by nggaring
justified recommendations with cases where theee ray
justifications or no recommendations at all.

5.1 Participants

Nineteen analysts participated in the study. Al la minimum of
three years experience in the job and most had edods an
analyst for over five years. Data from one of #malysts was
removed from our dataset due to the analyst's tdakxperience
with the particular event signatures which were kay
accomplishing the task.

5.2 Procedure

Each analyst was tested individually in a two-haassion.
Sessions began with an introduction to the study ametailed
training on the NIMBLE test console, lasting ab80t minutes.
During the training, participants had an opportunib ask

questions as they viewed an example of each oflismay and
suggestion conditions and completed two hands-camples.

Following the training, analysts completed 24 timadalysis
trials, with a break at the midway point. They aémstructed to
complete each trial within two minutes and to giheir best
guess if they ran out of time. A chime soundedédé before the
end and again at the two minute mark. The alestyaver,

remained displayed until the analyst completedtdisk, even if it
took longer then two minutes. The purpose of immp® two

minute limit was to mimic the limited time constits under
which analysts often operate. Pre-testing withlysts, who did

not participate in the main study, confirmed thved iminutes was
realistic for completing the tasks.

The task had three parts. First the analyst datedrthe category
of alert and its priority by selecting the alerteggory from a list of
11 items and the priority from a list of 2 itemsol, Medium).

We did not provide “High” as a priority choice, a& had no
examples of high-priority alerts in our dataset, s suggested
explanation could be high-priority. The analystlicgated their



completion of this task by clicking on a button. he} then
indicated their confidence in their answer by s@ecfrom a 5-
point Likert scale ranging from “Very sure of myatbe” to “Very
unsure of my choice”.

Analysts were asked to talk aloud during the trit®ut what
they noticed in the displays and how they wereisglthe task.

They were given an opportunity between trials t«enadditional

comments and observations on the tasks and theintseface.

We recorded audio from the entire session, witlr fhermission.

Individual sessions concluded with a survey in \Whanalysts
rated the value of the visual and tabular displayggestions and
justifications, and provided general feedback asftections on

their experience. After all the analysts had catgd their

individual sessions, they attended a two-hour fogusup to

discuss their impressions of the study.

5.3 Research Variables
We tested the research goals with a fully balangadhmetric
design in which we independently varied 4 variables

¢ Display. Visual vs. tabular.

* Recommendation. No suggestion vs. three suggestions vs.

three suggestions with justifications.

¢ Suggestion Accuracy. No correct suggestion vs. one correct
suggestion among the three suggestions given.

e Order. First set vs. second set. The first 3 variabdssilted
in 12 unique conditions. Each of these conditioves
presented as a complete set in a random order. s&hef
conditions was presented twice using a total ofuBijue
items.

As participants completed each trial, the NIMBLEftsare
logged their response, the time to complete eagporese, and the
analysts’ confidence level. These log data weneveded into
our primary dependent measures of a) task timecbyiracy of
response and c) confidence level. The data wealyzed using
ANOVA repeated measures design.

Quantitative measures from the trials and surveyrewwugmented
by qualitative data from the audio recordings afheaession and
from the group debrief session at the end.

6. STUDY RESULTS
6.1 Quantitativefindings

Before reporting the results, it should be noteat #xperimental
requirements as well as privacy restrictions lichitevhat
information we could display, which could have inmpd
decision-making. While we provided a familiar emviment and
task, we were asking analysts to make decisiortsowitaccess to
typically available information such as event signa
documentation, custom IDS event fields, web hostL$JRand
timestamps. Additionally, the decision to have #malysts talk

! The term “accuracy” is used as a shorthand to tefagreement
between the category and priority selection byahalyst in the
study and the designation given to the same aferthe
historical record.

aloud during the trials not only increased the alletime but
probably also increased the variability of the cesge times. And
the two-minute limit, which was less time than maofythese
analysts took in their regular job, may have inseghthe error
rate.

6.1.1 Accuracy

Figure 3 below shows percent accuracy under camditiof no
suggestion, suggestion, and justification for tteai@l and tabular
display over the first and second set of trials.
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Figure 3: Percent Accuracy

Overall, the analysts were slightly more accuratih the visual
display (31%) compared with the tabular display%28F, 17 =
3.2, p <0.10). This effect was stronger in theosel set of trials
where accuracy for the visual display was 35% aspawed with
20% for the tabular display {f;= 4.6, p < 0.05).

Across both tabular and visual displays, there wasoverall
difference between the three level of recommenddfgs,= 1.0,
p > 0.10). However, for the visual display, jusation improved
accuracy while for the tabular display the justfion reduced
accuracy (k3= 3.8, p < 0.05).

6.1.2 Response Time
The average response time overall was 85 secomdsyithin the
two minute period.

The average response time across all conditionsh@vn in
Figures 4a and 4b. There was a significant mdecebdf order,
with the second set taking less time on average the first set
(F1'17: 95, p < 001)
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Figure 4a: M ean response time (secs) for first set of trials
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Figure 4b: Mean response time (secs) for second set of trials

There was also a main effect of
justifications taking longer to process than sutigas which took
longer than no suggestions,gz= 6.7, p < 0.01). Response times
for the visual displays were slightly longer thar the tabular
displays (f17= 2.7, p = 0.12).

6.1.3 Confidence

There was no effect of any of the experimental dtwms on
confidence level. The average confidence level waiformly
high across all conditions.

6.1.4 Ratings

After the timed trials were completed, each subyeas asked to
rate the helpfulness of the displays and suggesfiantheir task,
on a scale from 1 (very unhelpful) to 5 (very halpf There was
no significant difference in rating between the uais display
(average rating = 3.47) and the tabular displagr@ye rating =
3.67) (related t-test = -0.54, df = 17, p > .10However, there
was a small negative correlation between the twinga (Pearson
correlation = -0.38, p = 0.15) suggesting that gstalwho liked
one type of display did not like the other. Thevere no
correlations between the ratings and performaritiegrein terms
of accuracy or response time. In other words,yatslwho gave

recommendation with

higher ratings to the visual display were not maceurate nor
faster than analysts who gave lower ratings tosthigal display.

Analysts found the justifications to be signifidgninore helpful
(average rating = 3.67) than the suggestions dndke (average
rating = 3.06) (related t-test = 2.265, df = 1% 0.05).

There were no correlations between the individuéfergénces
(tenure, experience) and any of the ratings forpldis or
suggestions, indicating that differences in ratifgs visual or
tabular was not a function of tenure or experiemaeof personal
preference and perhaps differences in cognitivie.sty

In summary, analysts were able to understand amdpoiate our
Interactive Incident Diagrams despite their novelghowing
improved accuracy with minimal speed degradation the
incident classification task. Defensible recomnsimhs in
combination with the visual display were also assted with
better accuracy.

In the next section, we turn to the qualitativead&d provide
further explanation for how and why the visual thgpand the
recommendations contributed to better performance.

6.2 Qualitative Findings
6.2.1 Display

6.2.1.1 Visual Display

The Interactive Incident Diagram (IID) provides aachine-
centric “picture” of event activity in a way thaighlights many of
the critical event relationships between source dastination
machines; these relationships may be obscured entabular
display. One of the unanticipated strengths ofviikeal diagram
was its ability not only to represent the kind etwork map some
analysts reported mentally configuring, but also sopport
reasoning in new ways about familiar information.

“Graphically seeing the strays. You tended to seaething that
obviously clustered, and then you'd see other suifthere and
think, well, what is that? Then there’s one shiittmthe corner,
and you think, who is that and why didn’t we segl-rom
looking at the tabular list, | saw it, but it wasuoh quicker
visually. The oddball stuff shows up a little bettsually than it
does with the table of events. That would be veeyul, | think.”

Analysts pointed out particular features that thi&ed in the
visual display, for instance:

“It was nice to see the subnet view and the ranges”
“The color coding, that's definitely helpful”

“As humans we are visual so when | am looking htgalist | am
actually in some ways building that grid patternrity mind. |
have to visualize flow, direction, signatures”

Many analysts liked the visual displays, especiditse who self-
identified as visual thinkers. However, as noteatlier in

reporting the ratings, there seemed to be cleaivithdl

differences with some people preferring the visaatl others
preferring the tabular. For instance, a person wtederred the
tabular layout said about the visual design:

“| like the idea... But in back and forth traffic [default layout]
makes something look like a spelkdeub and spoke but leads me



to the wrong conclusion at first glance if we a@rd) it quickly.
There is no way of showing a 1:1 relationship there

In summary:

¢ Analysts appreciated the system’s clustering ohtsvand
machines.

e “Strays” or anomalies lost in large data sets stautdn the
diagrams

«  Some visual cues were considered insufficientlyresgive,
such as the use of subtle line thickness differeihze
represent event volume

Some [ID manipulations presented challenges tcciefft and
effective exploration of layers of visual inforn@mti Enhancing
the ease of graphical manipulations in the 1ID auwgporting
more efficient and rich functionality should amplihe benefits
of working with a visual representation, improvinigoth
performance time and data exploration opportunitiesin
summary:

« Difficulties with zooming and panning the displajpwsed
scanning and search for information and interfevéth
concurrent viewing of “big picture” and asset detai

« Node and edge distribution and font sizes wereoptimized
with zoom, amplifying the loss of context when zéogfor
asset detail

¢ Some manipulations were unfamiliar and tricky totcol
(e.g. zooming too far upon scrolling, difficulty rcering
zoom on a specific area)

¢ Making some information only available though tqust
slowed analysts down

6.2.1.2 Tabular Display
Analysts valued having access to ‘raw” data withary
predetermined clustering or analysis.

“| felt more control in the tabular. For me, theaphic could have
been more useful, but | couldn’t control what waéng on in the
display.”

The ability to view events in temporal sequencehia tabular
format was also considered relevant for certairt abses.

In summary:

e Some analysts express a greater sense of “commdlability
to manage attention by sorting columns and focusing
clusters of signatures

e Sorting also supported rapid identification of “seji and
“junk signatures”

« Ease in scanning signature names represented ificsigh
advantage in the tabular interface

¢ Scrolling through sorted lists of events, analystse better
able to “get a feel” for total relative volumes different
signatures

6.2.2 Suggestions and Justifications

Because suggestion accuracy was one of our independ
variables, and because we always offered exaatbethuggested
explanations, the presented suggestions were at tiary weak
matches to the viewed alert. While the system wable to
illustrate these weak relationships, the analogoesild be
perplexing or unintelligible to analysts. Somelgsiz were also

confused about whether the justification showed iagls
historical alert or a generalization of severalvipes alerts.
Further, analysts had difficulty translating thdocccoding, often
forgetting the meaning of each shade of highlightinAs one
analyst said,

“I don't think | am trained in using the colors et

Analysts strongly value self-sufficiency, independanalysis, and
individual judgment. Most participants in the stuekpressed a
strong disinclination to follow a system-generatsgggestion

without confirming a diagnosis for themselves. fEheas explicit

resistance to the idea of trusting in or relying epstem

interpretation alone.

“l would look at the suggestions, and if it didmtatch my gut
feeling, | would simply discard the suggestion. bkcame
interesting when there was a justification, becatisn | could
look, why are you suggesting this? It might be sbimg | hadn’t

looked at or hadn’t recognized. It might be comglebogus, but
then | would see the reasoning, why are you sugmeshis?

What may | have missed? That's where the suggsstiename
valuable. If it matched my gut feeling then | woghl for that
option. So, the suggestion by itself was sort athless to me,
whatever data was behind it. Only when there wasstfication

added, | had the intention to look at it and sely wid it come to
this suggestion?”

Suggestions without justifications (unless they everf high
statistical confidence) appeared to provide litdepport for
analysts.

“The percentages never seemed really strong. Ifesbimg came
up and said 90% | had some comfort knowing it vik@set ... but
when it is coming up and saying things in 20s absl & 10s and
20s doesn't really mean much to me. That's noebélian
random.”

Analysis of alert activity appears to occur in thghases:

¢ Discovery — becoming oriented, scanning, forming a mental
model of the information available

« Diagnosis— reasoning about the relevance of different gece
of information, forming a hypothesis

e Confirmation — coming to a conclusion

Suggestions with justifications offered support,particular, for
the Discovery and Confirmation phases of analysighlighting
those features of the current activity which coumesled to
features of previous activity served to suppattention
managemenh both the tabular and visual display modes, n@gkin
salient for analysts the key information in theptfy.

In addition, after analysts had developed a hymi$heoncerning
the activity, they valued the suggestions with ificsttions as
providing a “second set of eyes” When suggestions and
justifications agreed with analyst diagnosis andsoaing, they
provided confirmation, and when suggestions differieom
analyst diagnosis, analysts often viewed justiicet as
stimulating consideration of potential alternatives



7. DISCUSSION

In this section we consider some of the broadedigajons of
our findings for future design of displays and maceendations
for network intrusion tasks.

7.1 Displays

The complementary strengths of the visual and &abdisplays
suggest that analysts should have simultaneousssdoeboth.
This was something several analysts asked for ttliregith one
describing the value of multiple ways to view tlane situation
by stating:

“We might home in on one signature and automatycdismiss
it, because we see it so often. A lot of our wertepetitive. You
get very fast as you do it a lot, so those anomatight slip by. |
think anything like the visual/tabular thing thatebks our
thought pattern up is useful.”

Enhancing mechanisms for integration of views wosigport

this need to explore information dynamically froniffaetent

perspectives.  As analysts focus attention on iestitand

relationships of interest (i.e. nodes and edgesinvihe graphical
display), they want these to serve as the mechatiisough

which to shift directly from one display mode teethther. They
felt it would be insufficient simply to toggle beten displays.
Rather, analysts want to affect one by manipulativegother, for
example, by selecting an arc to view the correspanible rows,
or filtering and selecting sections of a table igpthy as an
interactive diagram. Advanced filtering capal@timay include a
faceted interface for event exploration, which wbatiditionally

provide useful summary statistics for the vieweeras, such as
event counts by signature. [10]

Analysts call upon a wide range of information tdorm their

decision-making that extends beyond event signatared the
identity of source and destination machines. Fompy reasons
and to maintain equality between the graphic abdl& displays
we were restricted in what information could beptiged. The
analysts, however, were quite vocal about what tehdil

information they were accustomed to or desirous wafich

included:

¢ Asset Information such as URLs, identification of proxy
machines, and the result of queries for geolocaton
WHOIS records.

¢ Timelnformation including the temporal sequence and pace

of events, which might be displayed on a timelinat tcould
also be used as a user control to filter eventsebyporal
regions, or to request a visual playback of theuseqge of
events.

¢ History: Ability to do research on machines and alerts is

critical to contextualizing current activity.

e Signature Documentation via a lookup feature to find
signature definitions, classification, severityddmown false
positives.

Analysts reported that lack of contextualizing dstaf this nature
would make sophisticated analysis of the charastdrseverity of
a threat, including the dismissal of false posgivespecially
challenging.

We believe the IID could use color and region shgdmnore
effectively. The red font we used to indicate int# machines
was chosen for consistency with the analysts’ ciireevironment
but can be problematic for color-blind users. Antdouous
contour that indicated the machines that are iateto the
protected network could help analysts quickly idfgribternal vs.
external activity, and would provide a place toitatke available
information about network hardware such as firesvalhd the
position of the source sensor(s) for events.

Analysts generally liked the I1ID’s default layouigarithm,
though we could improve layout for alerts that peeticularly
simple or complex. A bird’s eye view may be usefuhen
zoomed in to see detailed asset information angigeocontext
for the current viewport position relative to thetiee diagram.
Conversely, a fish eye lens effect may be usefalltmv detailed
asset information to be visible even when zoomed oBome
analysts requested scrollbars in addition to thH&'slipanning
mechanism when the current viewport could not ernass the
entire diagram. It may be advantageous to autcaibtizoom the
IID display in some cases, such as when new evants
incorporated into a diagram, or upon selection csuggested
explanation. If more advanced navigation capatidlitare
provided, it would be useful to have a visual higtmechanism to
allow the analyst to quickly return to a previouagilam state,
which would provide the additional benefit of allogy future
analysts to recreate the analytical steps takeimgluhe original
analysis. [9]

7.2 Suggestions and Justifications

The current approach to representing system reagdni means
of highlighting corresponding attributes is usefulHowever,
analysts expressed the wish to have reasoning nnacie
expressive with the ability to toggle between higfhting
matching attributes and highlighting anomalies @tiepancies
against the model. Often, those elements of an ialeonsistent
with a typical or characteristic case may be esigaielevant for
diagnosis.

Match scores provided the quantification of degoéaimilarity
used by the system to identify the most similaresas the
knowledgebase. We were interested in discoverirgetiner
presenting match score values would influence atsly
evaluation of suggestions and justifications. Heave these
model similarity scores were particularly difficdtir analysts to
interpret. Instead, analysts want and expect dangemore like a
confidence score, how accurate this suggestionbeas in the
past, or how often it has been previously acceptdfl.the
recommendations are derived from generalizationsnaftiple
incidents, they expect an indication of how robihst model is,
how many incident diagnoses contributed to it amel detailed
context around those incidents, in order to conflimcorrectness
of the generalization. As one analyst said:

"We're assuming that the data contributing into theggestion
presented is going to stay static, and in realggme of those
signatures can go from being false positives folomg time,

making a pattern of commented security incident afi of a

sudden we get an update and now it's accuratey@ocan't base
the learning on that previous data."



Analysts also wanted the ability to record commescerning
unique or important characteristics of an incidenhelp future
analysis of similar situations. Several particigafelt that the
identity of the analyst working on a previous cases a strong
determinant of the previous diagnosis’ trustworgss
However, it may be that as the visual language efgposing
system reasoning becomes more expressive it willable to
convey enough detail that analysts shift away ftbeir current
focus on the identity and trustworthiness of thalgsts behind
the suggestions and become willing to evaluatestiphistication
and character of the system reasoning itself.

There are several opportunities for integratinggheronment we
have designed for online analysis with the envirents used for
research and development tasks, global trend asabssd other
offline threat assessment. We interviewed sevhraht engineers
who suggested that a variation on the IID mightuseful to
explicitly construct models to serve as the basw f
recommendations, or to view rules generalized franalyst
activity in order to vet candidates for fully autatic alert
processing.

8. CONCLUSION

We have presented a two-fold approach to improvihg
performance of online cybersecurity analysts, caomnigi a novel
visualization of alert information with defensiblencident
classification recommendations generated from Hhesb
incidents of a similar nature. We evaluated thectcality of this
approach by creating the NIMBLE prototype environinand
testing it in a controlled empirical study with IBofessional
analysts, leveraging alert data gathered from dioea
monitoring systems.

Our test framework and assigned task did not exaeflicate
analysts' current working environment, but the ipgrants felt
they were a reasonable approximation. Analystsevadle to
understand and manipulate our Interactive Incid@agrams with
very little training, showing improved accuracy an incident
classification task with minimal speed degradam no impact
on confidence. It was not obvious that visualizicgrelated
event information would have any positive effectpamformance;
many of the analysts participating in our study heghrs of
experience interpreting IDS event information pneéed in a
tabular format.

We have discussed a number of possible improvemtmts
NIMBLE's interactive visual display and recommenaofat
features, such as offering multiple linked représgéons of alert
information (e.g. visual, tabular, timeline, geqgreal) with
integrated mechanisms for querying and filtering,iroproving
mechanisms for conveying recommendation relevaritevould
be useful to revisit our findings with a refined \BLE user
experience that incorporates alternate informatiisplays or new
methods for visualizing justifications.

There are also many opportunities for future staflynteractive
visualizations and defensible recommendations leraspects of
the online analysis vigilance task. Several anslggmmented
that the Interactive Incident Diagram would be fdlm training
new analysts, or in communicating problems to austo
stakeholders. We would like to further exploresthotion of IIDs
as boundary objects in

synchronous and asynchronous

collaboration tasks. Defensible recommendationyg b&useful
not only for incident classification but also fother actions
within the environment, such as suggesting whiclerigs to
execute or which remedial measures to propose. atBaching
more explicit user metadata to recorded interastianth the
environment it may also be possible to detect amdpensate for
analyst fatigue, or to automatically infer analystseas of
expertise for more intelligent distribution of inoing alerts.

We found that analysts have a significant prefezerior

recommendations that include justifications, whichas

repercussions for the types of machine learningrdtgns that are
appropriate for this use case. There are a vaoietther factors
whose impact on the usefulness of system recomrtienddears
exploration. Chief among these is the underlyiogusacy of the
recommendation engine, with its corresponding irhpacanalyst
trust.

By their very nature, vigilance tasks tend to aiisethe most
critical of environments. These environments canwviaith good
reason, conservative about risk and cautious abloalhge. We
take this as a mandate for both user-centered rdemigl the
evaluation and validation of proposed improvemémtsugh both
qualitative and quantitative user studies. Analysoremost
concern is the successful completion of their missand they are
well aware of the increasing sophistication andsegences of
malicious activity. We found strong interest intfbe@isualization
and defensible recommendations as approaches forowng
cybersecurity incident management, and we have hégtes that
these techniques will enable analysts to resporfdttoe threats
more nimbly.
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