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Parallel Simulation and Virtual-Machine-Based Emulation
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The emerging software-defined networking (SDN) technology decouples the control plane from the data plane
in a computer network with open and standardized interfaces, and hence opens up the network designers’
options and ability to innovate. The wide adoption of SDN in industry has motivated the development of
large-scale, high-fidelity testbeds for evaluation of systems that incorporate SDN. In this article, we develop
a framework to support OpenFlow-based SDN simulation and distributed emulation, by leveraging our prior
work on a hybrid network testbed with a parallel network simulator and a virtual-machine-based emulation
system. We show how to exploit typical SDN controller behaviors to handle performance issues caused by
the centralized controller in parallel discrete-event simulation. In particular, we develop an asynchronous
synchronization algorithm for passive SDN controllers and design a two-level architecture for active SDN
controllers. We evaluate the system performance, showing good scalability. Finally, we present a case study,
using the testbed, to evaluate network verification applications in an SDN-based data center network.
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1. INTRODUCTION

Manual hardware configuration is a disaster for management of modern networks, such
as enterprise networks and data centers. OS and storage virtualization have already
made infrastructure configurable on the fly by using software. However, networking
has lagged behind, with fragmented technologies and standards. For example, to deploy
a network-wide policy in a cloud platform, the network operators must (re)configure
networking for thousands of physical and virtual machines, including access control
lists, VLANs, and other protocol-based mechanisms. The main issue is that today’s
networks are operated by specialized control planes with specialized features on top of
specialized hardware. Only networking vendors know how to make those things work.
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Traditional networking architecture is not well suited for new networking technologies,
such as cloud services, mobile computing, and server virtualization.

Many switch chips already have open interfaces. Software-defined networking (SDN)
aims to open up those interfaces much further with a universal interface through
which either virtual or physical switches can be controlled via software. Users can
create their own control planes and applications on top of the open interfaces for
network management and innovation. Customized, logically centralized controllers can
be designed to define the behaviors of those forwarding elements via a standardized
API, such as OpenFlow [2011], which provides flexibility to define and modify the
functionalities of a network after the network has been physically deployed. SDN
is currently of high interest in the industry. A number of vendors, including Cisco,
Dell, HP, IBM, Intel, Juniper Networks, Microsoft, NEC, and Google, are developing
components and standards that enable the software-defined data center. For example,
Google has deployed SDN in its largest production network: its data center–to–data
center WAN [Google 2011].

The growing number of new SDN applications demand rigorous testing and evalua-
tion before the new technologies are deployed in real large-scale networks. Since SDN
is a relatively new topic, there are issues yet to be addressed, such as inconsistent
views between the controller and the network, and design decisions yet to be made,
such as centralized control versus distributed control, and microflow management
versus aggregated-flow management. Therefore, high-fidelity testbeds for large-scale
system analysis are urgently needed to facilitate the transformation of in-house
research efforts of SDN to real productions. Researchers have created physical SDN
testbeds, such as Ocean [University of Illinois at Urbana-Champaign 2013], to provide
a realistic environment in which users can conduct (sometimes live) networking exper-
iments. However, the network scenarios with which users can experiment have limited
controllability and flexibility. Therefore, various emulation and simulation testbeds for
SDN have also been developed. Emulation testbeds, like Mininet [Stanford University
2012], utilize virtualization technologies to create flexible virtual network topologies
with better scalability than physical testbeds can offer. While emulation executes
“unmodified software” to produce behaviors and advance experiments, simulation
executes “software models.” Simulation uses abstractions to accelerate changes to
model states and usually requires less memory than emulation does. Hence, simulation
testbeds that support SDN, like ns-3 [2011], can offer even better scalability, but the
accuracy degrades because of models’ simplification and abstraction.

We want to develop a testbed that combines the advantages of both emulation
and simulation. In our prior work, we integrated a parallel network simulator with
a virtual-machine-based emulation system [Jin et al. 2012]. When conducting network
experiments, we can execute critical components in emulation and use simulation to
provide a large-scale networking environment with background traffic. In this work,
we develop a framework to support OpenFlow-based SDN emulation and simulation
(including models of an OpenFlow switch, controller, and protocol). The new frame-
work is based on close analysis of how SDN controllers typically behave, which led to
organizational and synchronization optimizations that deal with problems that might
otherwise greatly limit scalability and performance.

To improve the scalability of our testbed, we first make our emulation system dis-
tributed over multiple physical machines to support more virtual-machine-based em-
ulated devices (around 300+ on every physical machine). Second, we develop a new
global synchronization algorithm to coordinate the advancement of emulation and
simulation. As a result, a larger synchronization window size is obtained, which leads
to performance improvement. Third, we notice that an OpenFlow controller typically
connects with a large number of OpenFlow switches. That architecture gives rise to
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performance drawbacks in simulating such networks using parallel discrete-event sim-
ulation. The large number of switch-controller links could potentially reduce the length
of the synchronization window in barrier-based global synchronization and could also
negatively impact the channel scanning type of local synchronization. Through anal-
ysis of real SDN applications, we classify the controller applications into active con-
trollers and passive controllers based on whether the controllers proactively insert
rules into the switches or the rule insertions are triggered by the switches. We design
an asynchronous synchronization algorithm for the passive controllers and a two-level
architecture for the active controllers for use in building scalable OpenFlow controller
models. Our performance evaluation results show that the experiment execution time
scales linearly as the size of the network grows.

To improve the fidelity of our testbed, we not only offer the functional fidelity by run-
ning unmodified code like many other virtual-machine-based emulations but also offer
high temporal fidelity for large-scale experiments. By default, all virtual machines use
the same system clock of the physical machine. As a result, when a virtual machine is
idle, its clock still advances. That raises the temporal fidelity issue when applications
running on a virtual machine are expected to behave as if they were being executed
on a real machine. To the best of our knowledge, other existing SDN testbeds lack
such temporal fidelity for scalable emulation, including the most widely used ones like
Mininet [Lantz et al. 2010] and Mininet HiFi [Handigol et al. 2012]. Our SDN testbed
leverages an emulation virtual time system described in our prior work [Zheng et al.
2011]. Freeing the emulation from real time enables us to run experiments slower or
faster than real time. When resources are limited, we can always slow down experi-
ments to ensure accuracy. On the other hand, experiments can be accelerated if system
resources are sufficient. We also attempt to keep the high fidelity in the simulation
models by using the original unmodified OpenFlow library [Stanford University 2009],
which has been used to design many real SDN applications. Our testbed currently only
enables the execution of real SDN software but does not support network experiments
with real SDN hardware, and thus is unable to uncover SDN hardware implementation
issues.

The main contributions of this article are summarized as follows:

—We develop a network testbed for OpenFlow-based SDNs, which integrates a virtual-
time embedded emulation system and a parallel network simulator. The testbed
supports large-scale experiments (e.g., 300+ emulated devices and tens of thousands
of simulated devices on a single physical machine, and much more in distributed
settings for emulated devices) and has better fidelity than Mininet.

—We design a new global synchronization algorithm for coordinating emulation and
simulation to improve system scalability.

—We explore and evaluate means to improve the performance of simulation of Open-
Flow controllers in parallel discrete-event simulation, including an asynchronous
synchronization algorithm for controllers that are “passive” (according to a defini-
tion given in Section 5) and a two-level architecture for controllers we classify as
“active.”

—We utilize our testbed to evaluate various designs of an SDN-based real-time network
verifier, which detect network layer errors, such as loops and black holes, as the
network states evolve.

The remainder of the article is organized as follows. Section 2 introduces background
on software-defined networks, the S3F parallel simulation engine, and OpenVZ-based
network emulation. Section 3 presents related work. Section 4 describes the system
design. Section 5 discusses the challenges about the parallel simulation of SDN and
our approaches to address the challenges. Section 6 evaluates the performance of the
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Fig. 1. Operations of a simple OpenFlow-based SDN.

testbed. Section 7 presents a case study using our testbed for an SDN-based network-
wide verification system. Section 8 concludes the article with plans for future work.

2. BACKGROUND

2.1. OpenFlow-Based SDN

In a traditional network architecture, the control plane and the data plane cooperate
within devices, such as switches and routers, via internal protocols. By contrast, in an
SDN, the control plane is separated from the data plane, and the control logic is moved
to an external controller. The controller monitors and manages all of the states in the
network from a central vantage point. The controller talks to the data plane using
the OpenFlow protocol [OpenFlow 2011], which defines the communication between
the controller and the data planes of all the forwarding elements. The controller can
set rules about the data-forwarding behaviors of each forwarding device through the
OpenFlow protocol, including rules such as drop, forward, modify, or enqueue.

Each OpenFlow switch has a chain of flow tables, and each table stores a collection
of flow entries. A flow is defined as the set of packets that match the given properties,
for example, a particular pair of source and destination MAC addresses. A flow entry
defines the forwarding/routing rules. It consists of a bit pattern that indicates the flow
properties, a list of actions, and a set of counters. Each flow entry states, “execute this
set of actions on all packets in this flow,” for example, forward this packet out of port A.
Figure 1 shows the main components of an OpenFlow-based SDN and the procedures
by which an OpenFlow switch handles an incoming packet. When a packet arrives at a
switch, the switch searches for matched flow entries in the flow tables and executes the
corresponding lists of actions. If no match is found for the packet, the packet is queued,
and an inquiry event is sent to the OpenFlow controller. The controller responds with a
new flow entry for handling that queued packet. Subsequent packets in the same flow
will be handled by the switch without contacting the controller and will be forwarded
at the switch’s full line rate.

Some primary benefits of applying SDN in large-scale and complex networks include
the following:

—The need to configure network devices individually is eliminated.
—Policies are enforced consistently across the network infrastructures, including poli-

cies for access control, traffic engineering, quality of service, and security.
—Functionality of the network can be defined and modified after the network has been

deployed.
—Addition of new features does not require change of the software on every switch,

whose APIs are generally not publicly available.
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2.2. S3F—Parallel Simulation Engine

The Scalable Simulation Framework (SSF) [SSF 1999] is an API developed to support
modular construction of simulation models in such a way that potential parallelism
can be easily identified and exploited. Following 10 years of use, we created a second-
generation API named S3F [Nicol et al. 2011]. The S3F API contains only four main
base classes, which can be used for building a complex simulation model. Their func-
tions can be described briefly as follows:

—Entity is the base class that represents a simulation entity. Simulation experiments
can actually be viewed as interactions among a number of entity objects. An entity
object is a container of simulation state variables and instances of other simulation
objects, such as OutChannels and InChannels. For example, switches and hosts are
typically modeled as entities in a network simulation. An OpenFlow switch entity can
contain state variables, such as the flow table and the output queue size of a network
interface. An entity also includes methods that provide the logic of the simulation as
they modify the simulation states.

—inChannel represents the endpoint of a directed communication link between enti-
ties. In S3F, the communication between entities is achieved by message passing. An
entity can receive messages from another entity only through an input channel.

—outChannel is the starting point of a communication link between entities. An output
channel of an entity can be mapped to multiple input channels that belong to this
or other entities. A message sent to the output channel will be delivered by the
simulation kernel to all corresponding input channels that are mapped to the output
channel.

—Message is the base class that represents events sent between entities through the
communication channels. For example, messages can represent network packets in
a network simulation.

The S3F API is truly generic for systems that can be modeled as a collection of
objects that communicate via message passing. This type of simulation model can be
automatically mapped to multiple processors for parallel processing. A simulation is
composed of interactions among a number of entity objects. Each entity is aligned to a
timeline, which hosts an event list and is responsible for advancing all entities aligned
to it. Interactions between coaligned entities need no synchronization other than this
event list. Multiple timelines may run simultaneously to exploit parallelism, but they
have to be carefully synchronized to guarantee global causality. The synchronization
mechanism is built around explicitly expressed delays across channels whose endpoints
reside on entities that are not aligned. We call these cross-timeline channels. The
synchronization algorithm creates synchronization windows, within which all timelines
can be safely advanced without being affected by other timelines. Moreover, when S3F
is used for network experiments with both emulation and simulation, we need to
design efficient and correct synchronization between the two different systems (i.e.,
event-driven simulation and timesliced-based emulation).

2.3. OpenVZ-Based Network Emulation

OpenVZ provides container-based virtualization for Linux [OpenVZ 2006]. It enables
multiple isolated execution environments, called Virtual Environments (VEs) or con-
tainers, within a single OS kernel. It provides better performance and scalability than
full or para virtualization technologies, such as QEMU [2009] or Xen [2013]. A virtual
environment represents a separate physical machine, which has its own process tree
starting from the init process, its own file system, users and groups, and network in-
terfaces with IP addresses. Multiple VEs coexist within a single physical machine, and
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they share the physical resources and the same OS kernel, which means the Linux
host operating system provides all kernel services to every VE.

Emulations executing real network applications have high functional fidelity but
may not have high temporal fidelity, because virtual machines usually use the host
machine’s clock. A host serializes the execution of multiple virtual machines, and time-
stamps on their interactions reflect this serialization. Our version of OpenVZ provides
temporal fidelity by giving each virtual machine its own virtual clock [Zheng et al.
2011]. The key idea is to modify the OpenVZ schedulers so as to measure the time used
by virtual machines in computation (as the basis for virtual execution time) and have
Linux return virtual times to virtual machines but ordinary wall clock time to other
processes. The OpenVZ modifications measure the time spent in bursts of execution,
stop a container on any actions that touch the network, and give one container control
over the scheduling of all the other containers to ensure proper ordering of events
in virtual time. Modifications to the Linux kernel are needed to trap interactions by
containers with system calls related to time; for example, if a container calls gettime-
ofday(), the system should return the container’s virtual time rather than the kernel’s
wall clock time, but calls by processes other than OpenVZ’s processes ought to see the
kernel’s unmodified clock time. Therefore, although multiple VEs coexist on a single
physical machine, they perceive virtual time as if they were running independently
and concurrently.

3. RELATED WORK

OpenFlow [McKeown et al. 2008] was the first standard communications interface
defined between the control and forwarding layers of an SDN architecture. Exist-
ing OpenFlow-based SDN testbeds include MiniNet [Lantz et al. 2010], MiniNet-HiFi
[Handigol et al. 2012], OFTest [2011], OFlops [R.Sherwood 2011], and NS-3 [ns-3 Open-
Flow Model 2011]. MiniNet is probably the most widely used SDN emulation testbed
at present. It uses an OS-level virtualization technique called the Linux container and
is able to emulate scenarios with 1,000+ hosts and Open vSwitch [2011]. However,
MiniNet has not yet achieved performance fidelity, especially with limited resources,
since resources are time-multiplexed by the kernel, and the overall bandwidth is lim-
ited by CPU and memory constraints. The next-generation solution, Mininet-HiFi,
improves performance fidelity through CPU and link scheduling, for example, using
the Linux traffic control (tc) features, but still fails to provide temporal fidelity in a
virtual-machine-based environment [Heller 2013]. Ns-3 has an OpenFlow simulation
model and also offers a realistic OpenFlow environment through its generic emulation
capability, which has been linked to Mininet [ns-3 2013].

Researchers have incorporated various virtual machine technologies into network
emulation and simulation testbeds, such as Emulab [White et al. 2002], V-eM
[Apostolopoulos and Hassapis 2006], NET [Maier et al. 2007], VENICE [Liu et al.
2010], Time-Jails [Grau et al. 2008], and dONE [Bergstrom et al. 2006]. There are
typically three different levels of virtualization: (1) full virtualization (e.g., VMware
[1998] and QEMU [QEMU 2009]) offers complete transparency to the guest OS but
with a large performance overhead, (2) para-virtualization (e.g., Xen [2013], UML
[2006], and Denali [Whitaker et al. 2002]) performs modification to the guest OS to
bargain for greater efficiency, and (3) OS-level virtualization (e.g., OpenVZ [2006],
Virtuozzo [2012], and Linux Container [LXC 2013]) is much more lightweight and
enables the guest OS to share the host kernel with independent network stacks, file
systems, and process trees. Execution of real programs in virtual machines exhibits
high functional fidelity, and creation of multiple virtual machines on a single physical
machine provides scalability and flexibility for running networking experiments, but
low temporal fidelity is a major issue for virtual-machine-based network emulation
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systems. Virtual machines by default use the same system clock, which implies that
the time elapses even if a virtual machine is idle. Unfortunately, all the aforementioned
SDN emulation testbeds are not designed to address the temporal fidelity issue.

Efforts have been made to improve temporal accuracy in virtual-machine-based net-
work emulation and simulation. Gupta et al. [2005] modified the Xen hypervisor to
translate real time into a slowed-down virtual time, running at a slower but constant
rate at a sufficiently coarse timescale that makes it appear as though virtual machines
are running concurrently. This is a principal technique employed in virtual machine
time management named “time dilation” and has been adopted in many subsequent
works in network emulation [Biswas et al. 2009; Gupta et al. 2008; Liu et al. 2010;
Erazo et al. 2009; Bergstrom et al. 2006; Apostolopoulos and Hassapis 2006]. Grau
et al. [2008] proposed TimeJails, a low-overhead conservative synchronization mecha-
nism to regulate the time dilation factors. Lamps et al. [2014] extended the concept to
the extremely lightweight Linux Container technology (up to 45,000 virtual machines
per host). Those approaches are based on time dilation, a technique to uniformly scale
the virtual machine’s perception of time by a specified factor. We have taken a differ-
ent approach with the focus on synchronized virtual time by modifying the hypervisor
scheduling mechanism and have adopted this approach to integrate network emulation
and simulation with the notion of virtual time.

Our treatment of virtual time differs from the time dilation. For example, the Xen
implementations in DieCast [Gupta et al. 2008] and VAN [Biswas et al. 2009] preallo-
cate physical resources (e.g., processor time, networks) to guest OSs. If the resources
have not been fully utilized by guest OSs, the idle virtual machines (like an operat-
ing system) would simply advance the virtual clock. By contrast, we advance virtual
time discretely, and only when there is an activity in the applications or network. Our
approach is related to the LAPSE system [Dickens et al. 1994]. LAPSE simulates the
behavior of a message-passing code running on a large number of parallel processors,
by using fewer physical processors to run the application nodes and simulate the net-
work. In LAPSE, application code is directly executed on the processors, measuring
execution time by means of instrumented assembly code that counts the number of
instructions executed; application calls to message-passing routines are trapped and
simulated by the simulator process. The simulator process provides virtual time to the
processors such that the application perceives time as if it were running on a larger
number of processors. Key differences between our system and LAPSE are that we
are able to measure execution time directly and provide a framework for simulating
any communication network of interest, while LAPSE simulates only the switching
network of the Intel Paragon. Yoginath et al. [2012] also realizes virtual time for VM-
based network emulation by modifying the hypervisor scheduling. Their virtual time
system is implemented on Xen and supports an individual virtual clock for each vir-
tual core (VCPU) within a multicore VM. Our system has an emphasis on scalability by
employing lightweight OS-level virtualization (OpenVZ), and only supports inter-VM
scheduling to avoid additional overhead. In addition, we have integrated the virtual-
time-enabled emulator to a parallel network simulator with the application of SDN.

4. SYSTEM DESIGN

We have developed a large-scale network simulation/emulation testbed. The system
architecture is shown in Figure 2. The testbed consists of three major components:

—The S3F simulation engine, which is responsible for parallelizing the model execution
and coordinating operations between simulation and emulation

—The S3FNet network simulator, which contains various network device, application,
and protocol models, such as the OpenFlow switch, controller, and protocol models
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Fig. 2. S3F network testbed architecture diagram.

—The OpenVZ-based (OS-level virtualization) network emulator, whose operations are
embedded in virtual time

OpenVZ enables multiple isolated execution environments within a single Linux ker-
nel, called Virtual Environments. A VE runs real applications that interact with emu-
lated I/O devices (e.g., disks) and generates and receives real network traffic passing
through real operating system protocol stacks. Structurally, every VE in the OpenVZ
model is represented in the S3FNet model as a host within the modeled network.
Within S3FNet, traffic that is generated by a VE emerges from its proxy host inside
S3FNet and, when directed to another VE, is delivered to the recipient’s proxy host. The
synchronization mechanism needs to know the distinction between an emulated host
(VE host) and a virtual host (non-VE host). However, the type of host should make no
difference to the simulated passing and receipt of network traffic. The global scheduler
(discussed in Section 4) in S3F is designed for coordinating safe and efficient advance-
ment of the two systems and to make the emulation integration nearly transparent to
S3FNet.

We have been able to run millions of simulated hosts and 300+ emulated hosts on a
single physical machine because of the lightweight OS-level virtualization, and one can
enable more emulated hosts on a single machine simply by adding memory. To further
increase the scale of the experiments the testbed can conduct, we also developed the
distributed emulation capability shown in Figure 2. Currently, the parallel simulation
implementation of S3F is based on shared memory, and we plan to extend S3F to
distributed memory for further increasing its scalability in the future.

4.1. Emulation of Software-Defined Networks

Our testbed uses the lightweight OpenVZ containers to emulate network devices, and
we are able to bring up 300+ containers in a commodity server machine. To enable ex-
periments with larger numbers of emulated nodes, we have also extended our testbed
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to support distributed emulation [Zheng et al. 2013], as shown in Figure 2. A mas-
ter server machine is connected to multiple slave machines via TCP/IP over gigabit
Ethernet links. Each slave manages a group of local containers running on the same
physical machine and independently advances program states during its emulation
window. The master has knowledge of global network states. It is responsible for coor-
dinating all slave machines through a global synchronization algorithm, for managing
cross-slave events, and for performing the simulation experiments.

The global VE controller in our system (see Figure 2) is responsible for VE scheduling
and message passing between VEs and simulation entities. A given experiment will
create a number of guest VEs, each of which is represented by an emulation host within
S3FNet. Each VE has its own virtual clock, which is synchronized with the simulation
clock in S3F. The VEs’ executions are controlled by the S3F simulation engine, such
that the causal relationship of the whole network scenario can be preserved.

The VE controller uses special APIs to control all guest VEs. It has the following
three functionalities.

—Advance emulation clock: while the VE controller communicates with OpenVZ to
start and stop VE executions, it does so under the direction of the S3F global sched-
uler. Guest VEs are suspended until the VE controller releases them, and they can at
most advance by the amount specified by S3F. When guest VEs are suspended, their
virtual clocks are stopped, and their VE status (e.g., memory, file system) remains
unchanged.

—Transfer packets bidirectionally: the VE controller passes packets between S3FNet
and VEs. Packets sent by VEs are passed into S3FNet as simulation inputs and
events, while packets are delivered to VEs whenever S3FNet determines they should.

—Provide emulation lookahead: S3F is a parallel discrete event simulator using con-
servative synchronization, and its performance can be significantly improved by
making use of lookahead. The VE controller is responsible for providing such emula-
tion lookahead, that is, future behavior of emulation, to the simulation engine, and
the details of the lookahead are application dependent.

To emulate OpenFlow-based networks, we can run unmodified OpenFlow switch and
controller programs in the OpenVZ containers, and the network environment (such as
wireless or wireline media) is simulated by S3FNet. Since the executables are run on
the real network stacks within the containers, the prototype behaviors are close to the
behaviors in real SDNs. Once an idea works on the testbed, it can be easily deployed to
production networks. Other OpenFlow emulation testbeds, like Mininet [Lantz et al.
2010], have good functional fidelity too, but lack performance fidelity, especially with
heavy loads. We illustrate such differences by comparing the maximum throughput
between two hosts in Mininet and the emulation system in S3F. The network contains a
server–client pair connected through an OpenFlow switch, and the switch is linked to an
OpenFlow controller running the learning switch application. We use iperf to generate
both the TCP and UDP traffic for 10 seconds for every experiment. Two different
OpenFlow switch implementations are tested, Open vSwitch [2011] and the reference
implementation at Stanford [Stanford University 2009]. We conduct the experiments
on an old Levono T60 laptop equipped with an Intel 2.0GHz dual-core processor, 2GB
memory, and a 1-gigabit Ethernet network interface card. We repeat each experiment
10 times, and the experimental results are displayed in Table I.

It is observed that using our testbed to emulate the Stanford switch implementa-
tion can achieve significantly larger maximum throughputs than Mininet can. For TCP
traffic, the maximum throughput is 1.4Gb/s, which is 2.4 times faster than the through-
put in Mininet emulating OpenVSwitch and seven times faster than the through-
put in Mininet emulating the Stanford switch implementation. For UDP traffic, the
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Table I. S3F - Emulation and Mininet Testbeds Comparison: Single Link Maximum Throughputs

Experiment Setup Max Throughput (Average ± Standard Deviation, Mb/s)
Testbed OpenFlow Switch TCP UDP

Mininet OpenVSwitch (Kernel) 573 ± 5 556 ± 6
Mininet Stanford OpenFlow Switch 194 ± 8 170 ± 3

S3F - Emulation OpenVSwitch (User) 147 ± 23 170 ± 31
S3F - Emulation Stanford OpenFlow Switch 1400 ± 8 1727 ± 13

maximum throughput is 1.7Gb/s, which is three times faster than the Mininet emu-
lating OpenVSwitch and 10 times faster than the throughput in Mininet emulating
the Stanford switch implementation. One limitation of our system is that the OpenVZ-
based containers do not support running kernel modules. Therefore, we could only
bring up the OpenVSwitch user-space module, which degrades the performance much
more than the OpenVSwitch kernel module does. The experimental results show that it
is not possible to emulate gigabit links even in such a simple software-defined network
using Mininet on the aforementioned hardware platform. Performance fidelity will get
further degraded when larger networks are emulated on a single physical machine.
Imagine that one OpenFlow switch with 10 fully loaded gigabit links is emulated on
a commodity physical machine with only one physical gigabit network card. There is
no guarantee that a switch ready to forward a packet will be scheduled promptly by
the Linux scheduler in real time. Our system does not have such limitations, since the
emulation system is virtual-time embedded. The experiments can run faster or slower
depending on the workload. When load is high, we can ensure performance fidelity
by running the experiment slower than real time. On the other hand, when the load
is low, we can reduce the execution time by quickly advancing the experiment. Note
that like Mininet, our emulation system also employs OS-level virtualization tech-
nology; therefore, CPU-intensive network applications cannot be precisely emulated
when the emulated devices and the host OS are required to have different CPU types.
The limitation is introduced by the OS-level virtualization as a tradeoff to the system
scalability.

However, experimental results show that errors introduced by the virtual-time sys-
tem at the application level are bounded by the size of one emulation timeslice [Jin et al.
2012]. We may reduce the error bound by setting a smaller hardware interrupt interval
[Zheng et al. 2011]. Nevertheless, the interval cannot be arbitrarily small because of
efficiency concerns and hardware limits. We typically use 100μs as the smallest times-
lice. If our network experiments require detailed behaviors of a gigabit switch whose
processing delay is on the scale of a microsecond, emulating the switch with a 100μs
error bound is simply too large. That motivated us to develop a simulated OpenFlow
switch and an OpenFlow controller model; the simulation virtual-time unit is defined
by the users and can be arbitrarily small, typically a microsecond or nanosecond.

4.2. Simulation of Software-Defined Networks

S3FNet is a network simulator built on top of the S3F kernel. It is capable of creat-
ing models of network devices (e.g., host, switch, router) with layered protocols (e.g.,
IP, TCP, UDP), and it can also simulate a sophisticated underlying network environ-
ment (e.g., detailed CSMA/CD for traditional Ethernet and/or CSMA/CA for wireless
communication) and efficiently model the extensive communication and computation
in large-scale experimental settings (e.g., background traffic simulation models [Nicol
and Yan 2006; Jin and Nicol 2010]). S3FNet has a global view of the network topol-
ogy. Every VE in the OpenVZ emulation system is represented in the S3FNet as a
host model within the modeled network, together with other simulated nodes. Within
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S3FNet, traffic that is generated by a VE emerges from its proxy host inside S3FNet
and, when directed to another VE, is delivered to the recipient’s proxy host, as shown
in Figure 2.

We extended our network testbed to support OpenFlow-based SDN simulation ex-
periments. Our OpenFlow simulation model consists of the OpenFlow switch and the
OpenFlow controller, communicating via the OpenFlow protocol 1.0 [OpenFlow 2011].
The protocol library we use is the OpenFlow reference implementation at Stanford
University [2009], which has been widely used in hardware-based and software-based
SDN applications. The initial versions of the switch and the controller models have
been developed with reference to the ns-3 OpenFlow Model [2011]. Our OpenFlow
switch model can handle both simulated traffic and real traffic generated by the ap-
plications running in the containers. The switch model has multiple ports, and each
port consists of a physical layer and a data link layer. Different physical and data link
layer models allow us to simulate different types of networks, such as wireless and
wireline networks. A switch layer containing a chain of flow tables is located on top of
the ports. It is responsible for matching flow entries in the tables and performing the
corresponding predefined actions or sending an inquiry to the controller when no match
is found in the flow tables. The controller model consists of a group of applications (e.g.,
learning switch, link discovery) as well as a list of connected OpenFlow switches. It is
responsible for generating and modifying flow entries and sending them back to the
switches.

A packet is generated at the source end-host, either from the simulated applica-
tion layer or from the real network application in a container. The packet is pushed
down through the simulated network stacks of the host and then is popped up to the
OpenFlow switch via the connected in-port. Depending on the emulation or simulation
mode of the switch, the packet is searched within the simulated flow tables or the
real flow tables in the container, and a set of actions are executed when matches are
found. Otherwise, a new flow event is directed to the controller, meaning either the
simulated controller model or the real controller program in the container. The con-
troller generates new flow entries and installs the flow entries onto the switches via the
OpenFlow protocol. Afterward, the switch knows how to process the incoming packet
(and subsequent additional packets of this type) and transmit it via the correct out-
port. Eventually the packet is received by the application running on the destination
end-host.

While running executables of OpenFlow components in the emulation mode has
better functional fidelity than the simulation models do, we attempt to keep the high
fidelity in the simulation models by using the original unmodified OpenFlow library,
which has been used to design many real SDN applications. Also, the simulation models
are not constrained by the timeslice error bound (typically set to 100μs) in emulation.
In addition, we can run experiments in the simulation mode with much larger network
sizes. Finally, as a bonus effect of the OpenFlow design, we no longer have to preload a
forwarding table at every network device, since decisions on where and how to forward
the packets are made on demand by the controller. Simulating a network with millions
or even more network devices at the packet level is affordable in our system.

4.3. Simulation/Emulation Synchronization

S3F synchronizes its timelines at two levels. At a coarse level, timelines are left to run
during an epoch, which terminates either after a specified length of simulation time or
when the global state meets some specified conditions. Between epochs, S3F allows a
modeler to do computations that affect the global simulation state, without concern for
interference by timelines. Good examples of use include periodic recalculation of path
loss in a wireless simulator and periodic updating of forwarding tables within routers.
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States created by these computations are otherwise taken to be constant when the
simulation is running. Within an epoch, timelines synchronize with each other using
barrier synchronizations, each of which establishes the length of the next synchro-
nization window during which timelines may execute concurrently. Synchronization
between emulation and simulation is managed by the global scheduler at the end of
a synchronization window, when all timelines are blocked. At that point, events and
control information pass between OpenVZ and S3F, using S3F’s global scheduler.

We designed a global synchronization algorithm to integrate the two subsystems
based on virtual time [Jin et al. 2012]. In our early design, emulation always runs
ahead of simulation, and the synchronization window size is calculated as the lower
bound of time when a packet may potentially reach the emulation to ensure that no
emulation packets within one timeslice are missed by the simulation. However, the
early design is too conservative in that it always assumes the worst-case scenarios in
which a VE may send a packet immediately within a timeslice. One way to improve
the system performance is to explore the emulation and simulation lookahead. In this
work, we revisited the synchronization algorithm to incorporate the lookahead for
speed gain. Emulation and simulation still execute their cycles alternately, but the
new synchronization algorithm makes the two subsystems advance their states like a
racing game. The scheduling mechanism used in the global scheduler is described in
Algorithm 1, and the notations used in this section are listed next.

temu current emulation time: OpenVZ virtual time
tsim current global simulation time, managed by S3F

ESW emulation synchronization window: the length of the next
emulation advancement

SSW simulation synchronization window: the length of the next
simulation advancement

SSWla simulation synchronization window of lookahead portion
α a scaling factor used to model faster (α < 1) or slower (α > 1)

processing times in OpenVZ system
T S timeslice length in OpenVZ system, unit of VE execution time
ELi the event list of timeline i, a set of all events on timeline i waiting to be executed

ELemu
i a subset of events in ELi that may affect the state of a VE,

e.g., a packet delivery to a VE
ELsim

i a subset of events in ELi that will not affect the state of a VE,
ELsim

i ∪ ELemu
i = ELi

ni timestamp of next event in ELi ; ni = +∞ if ELi = ∅

nemu
i timestamp of next event in ELemu

i ; nemu
i = +∞ if ELemu

i = ∅

nsim
i timestamp of next event in ELsim

i ; nsim
i = +∞ if ELsim

i = ∅

wi, j minimum “per-write delay” declared by outchannel j of timeline i
“per-write delay” is a lower bound on the delay between the sending
of any event from the outchannel to the mapped inchannel.

ri, j,k transfer time between outchannel j of timeline i and its mapped
inchannel k

si, j,x transfer time between outchannel j of timeline i and its mapped
inchannel x, where x aligns with a timeline other than i
(every inchannel is attached to a timeline during creation, see Section 2.2)

l emulation lookahead, computed by VE controller in every ESW
emuflag a Boolean value to indicate whether the system should start to run the

OpenVZ emulation; 1 means run and 0 means stop; the initial value is 1
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ALGORITHM 1: Global Simulation/Emulation Synchronization Algorithm
while true do

if emuflag == true then
compute ESW ;
advance the emulation for ESW , i.e., temu = temu + ESW ;
compute the emulation lookahead;
inject packets into the simulation;
emuflag = false;

else
while tsim < temu + lookahead do

if tsim < temu then
compute SSW ;
advance the simulation for SSW , i.e., tsim = tsim + SSW ;

else if any event in any ELsim
i has been executed then

t′ = min timestamp of such events;
advance the simulation,
tsim = min(temu + lookahead, t′ + min channel delay);
break;

else
compute SSWla;
advance the simulation for SSWla, i.e., tsim = tsim + SSWla;

end
emuflag = true;

end
end

Equation (1) illustrates how ESW is calculated:

ESW = max
{
α ∗ TS, min

timeline i
{Pi} − temu

}
, (1)

where Pi is the lower bound of the time when an event from timeline i can potentially
affect a VE-proxy entity in the simulation system, and is used by the global scheduler
to decide the next ESW:

Pi = min
{
nsim

i + Bi, nemu
i

}
,

and Bi is the minimum channel delay from timeline i:

Bi = min
outchannel j

{
wi, j + min

inchannel k
{ri, j,k}

}
,

where wi, j is the minimum per-write delay declared by outchannel j of timeline i, and
ri, j,k is the transfer time between outchannel j of timeline i and its mapped inchannel
k. In our system, a packet is passed to the VE controller for delivery right after the
packet is received by a VE-proxy entity in S3F. As simulation is running behind, the
packet is not available to the VE controller until simulation catches up and finishes
processing that event. The Pi calculation prevents a VE from running too far ahead
and bypassing a potential packet delivery event.

Equation (2) illustrates how SSW is calculated:

SSW = min
{

temu, min
timeline i

{Qi}
}

− tsim, (2)

where tsim is the current global simulation time, that is, simulation end time of the
previous SSW or SSWla, and Qi is the lower bound of the time that an event of
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timeline i can potentially affect an entity on another timeline and is used by the global
scheduler to decide the next SSW :

Qi = ni + Ci,

and Ci is the minimum cross-timeline channel delay from timeline i:

Ci = min
outchannel j

{
wi, j + min

inchannel x
{si, j,x}

}
,

where wi, j is the minimum per-write delay declared by outchannel j of timeline i, and
si, j,x is the transfer time between outchannel j of timeline i and its mapped inchannel
x, where x aligns with a timeline other than i.

Equation (3) illustrates how the simulation synchronization window for the looka-
head portion, SSWla, is calculated:

SSWla = min
{

temu + l, min
timeline i

{Ri}
}

− tsim, (3)

where tsim is the current global simulation time, that is, simulation end time of the pre-
vious SSW or SSWla; temu is the current emulation time; l is the emulation lookahead;
and Ri is the lower bound of the time that an event of timeline i can potentially affect a
VE-proxy entity in the simulation system and is used by the global scheduler to decide
the next SSWla:

Ri = ni + Bi.

The new algorithm has been implemented in the testbed and has been evaluated
(see Section 6) and used for case study experiments. The global simulation lookahead
is extracted from SDN-based application models, such as the periodic probing features
in some controller applications. There are also various techniques that we could use
to extract the emulation application lookahead, such as prediction based on observed
input/output traffic [Zheng et al. 2013] or binary code analysis of SDN controller/switch
applications. Those are interesting topics that we will explore in future work.

5. SYNCHRONIZATION CHALLENGES IN PARALLEL SIMULATION
OF SOFTWARE-DEFINED NETWORKS

SDN-based network designs have multiple OpenFlow switches communicating with
a single OpenFlow controller. However, many-to-one network topologies not only cre-
ate communication bottlenecks at the controllers in real networks but also negatively
impact the performance of conservative synchronization of parallel discrete-event sim-
ulations. The conservative synchronization approaches in parallel discrete-event sim-
ulation generally fall into two categories: synchronous approaches based on barriers
[Ayani 1988; Lubachevsky 1989; Nicol 1993], and asynchronous approaches, in which a
submodel’s advance is a function of the advances of other submodels that might affect
it [Chandy and Misra 1979]. The single-controller-to-many-switch architecture can be
bad for both types of synchronization.

We can view a network model as a direct graph: nodes are entities like hosts,
switches, and routers; edges are the communication links among entities; and each
link is weighted by a link delay. From S3F, the parallel simulation engine’s viewpoint,
the graph is further aggregated: a node represents a group of entities on the same
timeline, and the simulation activity of all entities on a timeline is serialized; multi-
ple links between timelines ti and tj are simplified into one link whose weight is the
minimum (cross-timeline) delay between ti and tj .

A barrier-based synchronous approach is sensitive to the minimum incoming edge
weight in the entire graph. If one of the OpenFlow switch-controller links has a very
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small link delay (e.g., a controller and a switch could be installed on the same physical
machine in reality), even if there are few activities running on the link, the overall per-
formance will be poor because of the small synchronization window. On the other hand,
an asynchronous approach focuses on timeline interactions indicated by the topology
but is subject to significant overhead costs on timelines that are highly connected. The
SDN-based architectures unfortunately always have a centralized controller with a
large degree, which is not a desirable property for asynchronous approaches either.

To improve the simulation performance with SDN architectures, we explored the
properties of an OpenFlow controller with reference to a list of basic applications in
POX, which is a widely used SDN controller written in Python [POX 2011]. We have
two key observations. First, controllers can be classified as either passive or active.
A controller is passive if the applications running on it never initiate communication
to switches but only passively respond to inquires from switches when no matches
are found in switches’ flow tables. The forwarding.l2_learning application is a good
example of an application that runs on a passive controller. An active controller initiates
communication to switches, for example, detecting whether a switch or a link is working
or broken. The openflow.link_discovery application is an example of an application that
runs on an active controller.

Second, a controller is not simply a large single entity shared by all the connected
switches. A controller actually has states that are shared by switches at different levels.
Suppose there are N switches in a network, and m switches (1 ≤ m ≤ N) share a state.

—When m = N, the state is network-wide; that is, the state is shared by all switches.
For example, the openflow.spanning_tree application has a network-wide state, which
is the global network topology.

—When m = 1, the state is distributed; that is, no other switch shares the state with
this switch. For example, the forwarding.l2_learning application has a distributed
state, which is the individual learning table for each switch.

—When 1 < m < N, the state is shared by a subset of switches of size m. For example,
the openflow.link discovery application has such a state, which is the link status
shared among all the switches connected to that link.

Based on the previous two observations, we revisited the controller design and inves-
tigated techniques to improve the performance of the simulation of OpenFlow-based
SDNs with parallel discrete-event simulation. In particular, we designed an efficient
asynchronous algorithm for passive controllers; we also proposed a two-level controller
architecture for active controllers and analyzed performance improvement for three
applications with different types of states. The proposed architecture is not only help-
ful with respect to simulation performance but also a useful reference for designing
scalable OpenFlow controller applications.

1) Passive Controller: A passive controller indicates that applications running on
the controller do not proactively talk to switches, a feature we can use in designing a
controller whose functionality is known to be passive. Our new design is also motivated
by another observation: when a switch receives an incoming packet, the switch can
handle the packet without consulting the controller if a matched rule is found in the
switch’s flow table; further, for some applications, the number of times the controller
must be consulted (e.g., the first time the flow is seen, or when the flow expires) is
far lower than the number of packets being processed locally. All the learning switch
applications in the POX controller have this property.

Therefore, our idea is that for a passive controller, switches are free to advance their
model states without constraint, until the switches have to communicate with the
controller. If multiple switches share a state, then the controller needs to refrain from
answering the inquiring switch until all its cross-timeline-dependent switches have
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advanced to the time of the inquiring switch. We design an algorithm (Algorithm 2)
for efficient synchronization among switches and fast simulation advancement with
correct causality in the case of a passive controller, and the notations are summarized
as follows:

Let A be the set of applications running in the OpenFlow controller, and R be the
set of OpenFlow switches in a network model. We define TL(r) to be the timeline
to which switch r is aligned. For each a ∈ A and r ∈ R, we define f (r, a) to be the
subset of OpenFlow switches that share at least one state with switch r for application
a. For example, f (r1, a1) = {r2, r3} means that switches r1, r2, and r3 are dependent on
(sharing states with) application a1. Causality is ensured only if the controller responds
to the inquiry from switch r1 with timestamp t1, after all the dependent cross-timeline
switches ri, that is, ri ∈ f (r1, a) and TL(ri) 	= TL(r1), have advanced their times to
at least t1. For an application with network-wide states, f (r, a) = R − {r}; for a fully
distributed application, f (r, a) = φ.

The algorithm is divided into two parts: one at the controller side and another at
the switch side. Since the controller cannot actively affect a switch’s state, it is safe
for a switch to advance independently of the controller until a switch-controller event
happens (e.g., a packet is received that has no match in the switch’s flow tables). The
delays between the controller and the switches thus do not affect the global synchro-
nization. The causality check is performed at the controller, since it has the global
dependency information of all the connected switches. Upon receiving an OpenFlow
inquiry, the controller is responsible for making sure no response will be sent back
to the switch (meaning that the switch will not advance its clock further) until all
its dependent switches have caught up with it in simulation time. In addition, this
design does not require that the controller be modeled as an S3F entity, which means
that the controller does not have to align with any timeline. All the interactions can
be done through function calls instead of via message passing through S3F channels.
This design works only for a passive controller and can greatly reduce the communica-
tion overhead between the controller and switches. As a result, a passive controller is
not a bottleneck in conservatively synchronized parallel simulation, as low latency to
switches and high fan-out might otherwise cause it to be.

The algorithm works for all passive controllers, whether the state is distributed (e.g.,
forwarding.l2_learning) or network-wide (e.g., forwarding.l2_multi). The performance
of passive controllers benefits from the use of distributed states as well as the smaller
number of cross-timeline-dependent switches. In S3F, the global synchronization algo-
rithm (see Section 4) runs beyond the synchronization algorithm for passive controllers
to ensure that all switches can always advance their simulation states without encoun-
tering any deadlocks.

Our synchronization algorithm is similar to those existing asynchronous approaches
[Xiao et al. 1999; Simmonds et al. 2002; Nicol and Liu 2002] in the sense that all of
them focus only on timeline interactions that the topology indicates can occur, and
the advancement of each timeline is dependent on the predicted future behavior of
other timelines that may affect it. However, our approach is more specific to the SDN-
based network architecture with a centralized controller. The controller is responsible
and capable to make the scheduling decision when necessary rather than letting each
timeline make its own decision through an extensive (possibly expensive) channel
scanning mechanism.

2) Active Controller: Active OpenFlow controllers proactively send events to the
connected OpenFlow switches, and those events can potentially affect the states of the
switches. Therefore, the switches do not have the freedom to advance the model states
like those switches that connect to passive controllers, but are subject to the minimum
link latency between the controller and the switches. However, the question we have is:
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ALGORITHM 2: Synchronization Algorithm with Passive Controller
Controller Side
/* Upon receiving an OpenFlow inquiry from switch ri with timestamp ti */
for each application aj related to the inquiry do

for each switch rk ∈ f (ri, aj) AND T L(rk) 	= T L(ri) do
get the current simulation time, tk, of rk
if tk < ti then

schedule a timing report event at time ti on the timeline of rk
increase dcts[i] by 1
/* dcts[i] is the counter of unresolved dependent cross-timeline switches for switch ri */

end if
end for

end for

pthread mutex lock()
while dcts[i] > 0 do

pthread cond wait()
end while
pthread mutex unlock()

process the inquiry (i.e., generate rules to handle packets)
send an OpenFlow response to switch ri

Switch Side
/* Upon receiving a packet at an ingress port */
check flow tables
if found matched rule(s) then

process the packet accordingly
else

send an OpenFlow inquiry to the controller
end if

/* On reception of an OpenFLOW response */
store the rule(s) in the local flow table(s)
process the packet accordingly

/* Scheduled timing report event for switch ri fires */
pthread mutex lock()
decrease dcts[i] by 1
if dcts[i] = 0 then

pthread cond signal()
end if
pthread mutex unlock()

are the assumptions about connectivity in SDNs overly pessimistic? For example, can
any timeline generate an event at any instant that might affect every other timeline?

We make the following observations about the active controller applications. First,
not all controllers have only network-wide states. Some have fully distributed states,
for example, a switch’s on/off state (openflow.keep alive application); some have states
that are shared among a number of switches—for example, a link’s on/off state is shared
among switches connected to the same link (openflow.link_discovery application). Sec-
ond, not all events will result in global state changes, and quite often a large number
of events are handled locally and only influence switches’ local states. For instance,
only when a communication link fails, a link is recovered from failure, or some new
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Fig. 3. (a) Typical SDN controller architecture. (b) Two-level SDN controller architecture.

switches join or leave the network is a link status change event generated for the
openflow.link_discovery application, so that it updates its global view; during the re-
maining (most of the) time, the network-wide state, that is, the global topology, remains
unchanged. Therefore, for such applications, instead of having a centralized controller
frequently send messages to all the connected switches and wait for responses, we can
first determine which events affect network-wide states and which do not, and then
offload those events that only cause local state changes toward the switch side. Thus,
we relieve the pressure at the controller.

Based on our observations of active controller applications, we modify the existing
architecture (Figure 3(a)) to a two-level active controller architecture (Figure 3(b)). Lo-
cal states are separated from network-wide states in a controller, and the controller is
divided into a top controller and a number of local controllers. The top controller com-
municates only with the local controllers, not with the switches, to handle events that
potentially affect the network-wide states. The local controllers run applications that
can function using the local states in switches, for example, the local policy enforcer, or
link discovery. There are no links among local controllers. With the two-level controller
design, we aim to improve the overall scalability, especially at the top controller, as
follows:

—The top controller has a smaller degree, which is good for local synchronization
approaches.

—Fewer messages are expected to occur among local controllers and the top controller
for many applications, since the heavy communication is kept between the switches
and local controllers. That is good for local synchronization approaches as well.

—If we align the switches that share the same local controller to the same timeline,
the local controllers actually do not have to be modeled as an entity. Message passing
through channels is not needed, as function calls are sufficient.

Conversion of a controller into a two-level architecture requires that modelers care-
fully analyze the states in the controller applications. That process is not only useful in
creating a scalable simulation model but also helpful in designing a high-performance
real SDN controller, because it offloads local-events processing to local resources. We
have studied three active applications (openflow.keep_alive, openflow.spanning_tree,
and openflow.link_discovery) in the POX controller [Jin and Nicol 2013]. Through care-
ful application state analysis, we can often convert applications with local states into
two-level controller architectures for simulation performance gain. The analysis not
only helps modelers to create scalable SDN network models but also helps in the design
of scalable real SDN controllers. Many SDN applications can be far more complicated
than the basic applications in POX, possibly a combination of passive and active ap-
plications, with both distributed and network-wide states, and the states may change
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dynamically with time and network conditions. Even so, it is still useful to divide a
complex controller into small building-block applications, classify them according to
the state type as well as passiveness/activeness, and then apply the corresponding
performance optimization techniques.

6. PERFORMANCE EVALUATION

We conducted experiments to evaluate the global synchronization algorithm imple-
mented in the testbed as well as how well the performance scales as the size of the
network models grows. The testing platform for conducting all the experiments in this
section was built on a Dell PowerEdge R720 server with two 8-core processors (2.00GHz
per core) and 64GB RAM and installed with 64-bit Linux OS. With the hyperthreading
functionality enabled, our network simulator can concurrently explore up to 32 logical
processors.

6.1. Global Synchronization

Synchronization windows indicate how long the emulation or the simulation can pro-
ceed without affecting entities on other timelines. The lengths of the windows are com-
puted at synchronization barriers based on detailed network-level and application-level
information, such as minimum link delay and minimum packet transfer time along the
communication paths, or network idle time contributed by the simulated devices that
do not actively initiate events (e.g., server, router, switch), or the lookahead offered by
the OpenVZ emulation. In this set of experiments, we wanted to investigate the perfor-
mance impact of the size of the synchronization window on our simulation/emulation
testbed. We set up a network with 64 emulated hosts, among which every two hosts
paired up a server–client connection, and 32 links in total. Each server sent a constant-
bit-rate UDP traffic flow with a constant 1,500-byte packet size to its client. The em-
ulation timeslice is set to 1ms, and the networking environment created in S3FNet
had 1Gb/s bandwidth and a 1ms link delay. We varied the sending rate with 100Kb/s,
1Mb/s, and 10Mb/s in the aforementioned scenarios and recorded both the emulation
time and the simulation time every 10,000 packets. We then precalculated a constant
lookahead based on the observed average interpacket gap, essentially creating larger
synchronization windows, and reran the experiments for comparison. We observed
nearly identical sending/receiving traffic patterns for each scenario with and without
lookahead, which indicates little loss of experimental accuracy in the presence of the
lookahead. Each experiment was repeated 10 times, and the average execution times
for both emulation and simulation are shown in Figures 4 and 5.

With emulation lookahead, the execution time, for both emulation and simulation,
was significantly reduced for the 100Kb/s and 1Mb/s sending rates. That can be ex-
plained as follows. For the 1Mb/s sending rate, given a 1,500-byte packet size, the
average interpacket time is around 12ms, which equals 12 timeslices. Accurate em-
ulation lookahead should predict that amount (i.e., promise that a VE will not gen-
erate any events within the next such amount of time) and offer that value to S3F
for computing the next emulation synchronization window (ESW). The new ESW in-
creases to approximately 12 timeslices in length and thus minimizes the emulation
overhead. Since the emulation is now running far ahead of time as compared with the
case without emulation lookahead, and no events are injected into the simulation’s
event lists, the simulation also takes advantage of the empty event lists to compute
a large simulation synchronization window. Therefore, the execution times on both
simulation and emulation are significantly reduced. The same is true for the 100Kb/s
case. However, little improvement is observed for the 10Mb/s case, because the ESW
generated by emulation lookaheads (1.2ms) is close to one timeslice. Another obser-
vation is that the accurate lookahead results in the execution times for transmitting
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Fig. 4. Average emulation execution time (R =
sending rate, LA = lookahead).

Fig. 5. Average simulation execution time (R =
sending rate, LA = lookahead).

10,000 packets being very similar for all the sending rates. That is actually one bene-
fit of our virtual-time-embedded emulation system: we can accelerate low-traffic-load
emulation experiments by utilizing available system processing resources. Providing
good simulation lookahead is always challenging for conservative network simulation,
and our virtual-time-based simulation/emulation testbed gives another opportunity for
providing good emulation lookahead. The aforementioned experimental results clearly
indicate the huge performance gain that a good lookahead mechanism can bring to
our system, and thus strongly motivate our ongoing work investigating other types of
emulation lookahead, such as source code/binary analysis.

6.2. Performance Evaluation of Passive Controller Algorithm

In this set of simulation experiments, we explored the scalability of our testbed as
well as the performance improvement with the asynchronous synchronization algo-
rithm for the passive controllers. We created network models with 32 timelines. The
backbone of the network model consisted of a number of OpenFlow switches, and each
switch was connected to 10 hosts. We increased the number of OpenFlow switches
connected to the controller from one up to 5,000, and the size of the network was thus
increased proportionally. Half of the hosts ran client applications, and the other half
ran server applications. The minimum communication link delay among the controller
and switches was set to be 1ms. During the experiments, each client randomly chose
a server from across the entire network and started to download files of 3KB via TCP
links. Once a file transfer was complete, the client picked another server and started
the downloading process again. All the OpenFlow switches connected to an OpenFlow
controller, and the controller ran the openflow.learning_multi application, which is es-
sentially a learning switch, but it learns where a MAC address is by looking up the
topology of the entire network. In the first set of experiments, we modeled the controller
as a normal S3F entity, and it connected to switches through channels. In the second
set of experiments, we used the passive controller design described in Section 5. We
repeated each experiment 10 times.

Figure 6 and Figure 7 show the average execution time and the event processing
rate with standard deviation, respectively. In the entity-based controller case, the
traditional barrier-type global synchronization was used. In the non-entity-based con-
troller case, synchronization was actually two-level: the global synchronization was
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Fig. 6. Scalability: experiment execution time. Fig. 7. Scalability: event processing rate.

used to simulate activities among switches and hosts, and within a synchronization
window, the asynchronous synchronization algorithm was used to simulate interac-
tions between the switches and the passive controller. We can see that in both cases,
the average execution time scaled almost linearly, which means the performance did
not degrade as the model size increased. We also notice that the non-entity-based con-
troller case with the passive controller algorithm (in blue) always performed better
than the entity-based controller case (in red) for both execution time and the event-
processing rate. That performance gain is a consequence of replacing the message-
passing mechanism with function calls for the controller-switch interactions. Further
improvement has been observed with smaller synchronization window sizes due to
smaller controller-switch delays [Jin and Nicol 2013]. The average event-processing
rate increased significantly at the beginning, since the model was not yet fully paral-
lelized over the 32 timelines because of the small network size. Once the switch size
reached 1,000, the average event-processing rate stabilized at 90,000 events per second
for the entity-based controller case, and 120,000 events per second for the non-entity-
based controller case, which indicates a 33% improvement in terms of the average
event-processing rate with the passive synchronization algorithm.

7. CASE STUDY: UNCERTAINTY-AWARE NETWORK LAYER VERIFICATION

One of the many benefits of applying SDN is that the logically centralized SDN
controller has a global view of the entire network, which enables us to conduct
network-wide verification, such as loop-freeness, end-to-end latency bound, and/or
no-violation-of-access-control policies. Figure 8 depicts the design of our SDN-based
network verifier. Sitting between the SDN controller and the network, the system
intercepts and verifies every control update before the update hits the network. If any
violation of security policies and network invariants is detected, alerts will be raised to
tell the operations to take response actions. We initially leveraged an existing system,
VeriFlow [Khurshid et al. 2013], to speed up the design process of the network-wide
verifier for SDN-based networks. However, observations of a network from an SDN con-
troller’s viewpoint are always delayed at any time instance, because of the inevitable
latency (such as networking delay and rule installation) between the controller and
network devices. Neglecting such controller-switch delays could result in severe system
performance drops. Furthermore, the controller-switch delays vary across devices and
over time. After issuing updates to the network, the controller has limited knowledge of
when and in what order the updates are applied. We define the inconsistency between
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Fig. 8. Design of an SDN-based network verification system.

Fig. 9. A typical multirooted tree topology in an SDN-based data center network.

the view of the controller and the network state that data packets encounter as the
network temporal uncertainties, which could lead to transient network errors and se-
curity policy violations. This motivates us to design a new uncertainty-aware network
verification system. With the help of our SDN emulation/simulation testbed, we can
evaluate the impact of the controller-switch latency, and our new uncertainty-aware
design of the network verifier, with controllable and realistic settings.

We conducted simulation/emulation experiments to evaluate the impact of the
controller-switch delay. We modeled a typical data center network interconnected by
three layers of switches running the Equal Cost Multipath forwarding (ECMP) protocol
as shown in Figure 9. ECMP is widely used in data center networks to take advantage
of the path multiplicity by using flow hashing to statically select a path among all of the
equal-cost paths. In our testbed, all the OpenFlow switches and the POX controllers
running the ECMP routing application were emulated in the OpenVZ containers, and
hosts and the networking environment were simulated. In the experiments, each host
sent TCP traffic to any other host in the network with uniform probability, and there
were 145 flows in total. We modeled the delays between the SDN controller and the
switches as a uniform distribution, U (0, n), and we vary n from zero up to 100ms. The
experiment was repeated on a single physical machine 10 times, and the setup was
relatively flexible and controllable in comparison to physical SDN testbeds.

The CDF of the flow connection establishment time is plotted in Figure 10. We notice
that as n increases, that is, larger delay between the controller and the switches, it
takes a longer time for flows to establish connections. When n is greater than 5ms, a
dramatic increase in flow connection time is observed. Moreover, some flow connections
are dropped due to TCP connection timeout, when n is greater than 2ms. We plot the
average number of dropped flows (with little variance) in Figure 11. We can see that
more flows are dropped as n grows (e.g., around 17% flow drop rate when n = 9ms). The
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Fig. 10. Flow connection establishment time, the
controller-switch latency ∼ U (0, n).

Fig. 11. Flow drop, the controller-switch latency is
uniformed distributed ∼ U (0, n).

experimental results show the severe consequences of neglecting the controller-switch
latency, which our new network verifier must address.

Next, we investigate the network temporal uncertainty issues for network verifi-
cation. Short-term network faults should not be neglected for building secure and
high-performance networks, such as mobile networks and data centers. For example,
suppose a data center administrator issues a permit-access rule to a firewall, but later
it decides to withdraw this rule. Because of the network temporal uncertainty, what
could happen at the firewall is that the rule removal could be executed before the
rule insertion. As a result, malicious or untrustworthy packets may enter a secure
zone because of a temporary access control violation. Failing to consider network tem-
poral uncertainty will result in many hidden errors during network state changes,
such as those that occur during DDoS attacks, misconfiguration corrections, or system
upgrades.

To address the challenges caused by the inevitable network temporal uncertainty,
we need a new uncertainty-aware network verification design. Existing tools [Mai
et al. 2011; Al-Shaer et al. 2009; Kazemian et al. 2012, 2013; Khurshid et al. 2013]
verify network state by checking a snapshot of the entire network. But none of them
take into account the uncertainty during the transition of the snapshots. To model the
network temporal uncertainty, we symbolically modeled the forwarding behaviors of
packets that arrive before and after an update occurs in the network, until the status
of the update is certain (e.g., through acknowledgment or timeout). Our approach was
to model the forwarding behavior as an “uncertain graph,” where a subset of links
are marked as uncertain links (depicted as dashed lines in Figure 8). We store all the
possible forwarding rules, including rules that are supposed to be deleted or replaced by
previously issued operations with pending confirmations, and mark those forwarding
rules as uncertain rules. When rules are collected to form a forwarding graph at each
device, the network verifier retrieves all the rules from the highest priority to lower
priorities until a certain rule is found. With that approach, some networking devices
may have more than one outgoing link, among which up to one is certain, and the
uncertain graph is the representation of all the possible combinations of forwarding
decisions at all the devices. That way, we can model the network uncertainty using a
single graph and answer queries by traversing the graph once.

With the new network verifier design, the next natural question is, what is the
performance improvement of the new design over the old design? For example, by how
much can we improve error coverage by taking uncertainty into account? Our SDN
emulation/simulation testbed has been utilized to answer those questions. We first
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Table II. Errors in Error Detection by Network Verifiers, Two-Level Fat-Tree with Learning Switch Applications

Network Temporal-Uncertainty-Aware
Verification Network Verification

Number of Missed Errors (False Positives) 8 0
Number of Incorrect Alerts (False Negatives) 0 0

Table III. Errors in Error Detection by Network Verifiers, 172 BGP Edge Routers

Network Temporal-Uncertainty-Aware
Verification Network Verification

Number of Missed Errors (False Positives) 7,098 209
Number of Incorrect Alerts (False Negatives) 137 12

conducted experiments on a small two-level fat tree network topology running learning
switch applications. Both OpenFlow switches and the controllers were emulated,
while the hosts were simulated. Every host was set to send traffic to any other hosts.
Three sets of traces were collected from the testbed: (1) flow entries at the controller
with the old network verifier, (2) flow entries (with confirmations) at the controller
with the new network verifier, and (3) flow entries installed at the switches. To obtain
the third set of traces, we slightly modified the OpenFlow switch code running in the
VEs to output the flow entries. All three traces were then fed into the network verifier
to generate error reports. Since traces from the switches represent the actual states
of the network, they serve as the ground truth. The number of missed errors (false
positives) and the number of incorrect alerts (false negatives) are shown in Table II.
We can see that the old network verifier failed to detect eight errors out of 12 total
flow entry updates (further investigation revealed that all eight errors are black-hole
errors). With the uncertainty model integrated, the new design is able to capture all
the transient black-hole errors in this case.

Next, we conducted experiments on a larger network scenario with the same mech-
anism. The network contained 172 edge routers constructed with Rocketfuel topol-
ogy data [University of Washington 2002]. We fed the routers with a stream of real
BGP traces (18,228 rules) [University of Oregon 2005] in our testbed and collected the
three sets of traces as we did in the previous experiments; the results are shown in
Table III. While both designs have missed errors and wrong alerts in this scenario, the
uncertainty-aware network verifier has much higher detection accuracy than the old
design. The new design was able to capture 6,889 more real errors than the old de-
sign did and experienced 125 fewer wrong alerts. With the evaluation results from our
testbed, we are confident that the uncertainty-aware network verifier will outperform
the old design by capturing more transient network errors when it is integrated into
real systems.

8. CONCLUSION AND FUTURE WORK

This article describes how we extended our network testbed, consisting of virtual-
machine-based emulation and parallel simulation, to support OpenFlow-based SDNs,
and our efforts to make the testbed scalable, including a new global emulation/
simulation synchronization algorithm, an asynchronous synchronization algorithm for
passive simulated controllers, and a two-level architecture design for active simulated
controllers. The evaluation results indicate that the testbed scales with large network
model size and has better performance fidelity than Mininet. We present a case study
on the use of our testbed for testing and evaluation of various designs of SDN-based
applications on network verification.
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We plan to evaluate the network-level and application-level behaviors for different
SDN applications under various network scenarios (e.g., long delay or lossy link).
We also plan to investigate techniques to extract lookahead specific to SDN models
to further improve the system performance. In addition, we will utilize the testbed to
design and evaluate more SDN applications, especially in the context of the smart grid;
an example would be design of efficient quality-of-service mechanisms in substation
routers, where all types of smart grid traffic aggregate. Currently, the testbed does not
support experimentation with real SDN hardware in the loop, which is a challenging
problem especially when real devices generate heavy workload. We plan to investigate
means to extend the virtual time concept to certain types of real SDN switches for
seamless connection of real hardware in our testbed.
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