
1 2 3 4 5 6 7 8 9 10
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

g(
x,

z 1
,z

2)

EM learning for g(x, z1, z2)

z1 = 0
z1 = 1
z2 = 0
z2 = 1

Approach

Learning Factor Graphs for Preempting Multi-Stage Attacks
in Cloud Infrastructure
Phuong Cao, Alexander Withers, Zbigniew Kalbarczyk, Ravishankar Iyer
University of Illinois at Urbana-Champaign

Result on learning parameters
Expectation-Minimization algorithm shows a fast
convergence rate, i.e., 3 iterations, of marginal probability
of zi for a 3-variable clique.

Goals
• Detect multi-stage attacks that make use of stolen credentials in large

enterprise networks, e.g., cloud infrastructure
• Employ factor graphs, a probabilistic graphical model, to capture

attacker behavior and detect malicious activities.
– Learning graph structure that represents dependencies among observed events and attack

stages

– Learning graph parameters, i.e., factor functions among observed events and hidden attack
stages, that represents strength of their dependencies using a factor graph correspond to
ongoing attack

Future Work
1. Automatically build graphs for evaluating

security of pre-deployed cloud applications

2. Evaluate of learned graphs in terms of
detection accuracy or model complexity

3. Build models to automatically respond to on-
going attacks

References
[1] Koller, Daphne, and Nir Friedman. Probabilistic graphical models:
principles and techniques. MIT press, 2009.
[2] Cao, Phuong, et al. "Preemptive intrusion detection." Proceedings of the
2014 Symposium and Bootcamp on the Science of Security. ACM, 2014.

Acknowledgement
This material is based upon work supported by the Maryland Procurement
Office under Contract No. H98230-14-C-0141
National Center for Supercomputing Applications staffs for insightful
discussions on incident reports of multi-stage attacks

Attack Paths

</> —
{} ——
———

Cloud Config
Markup Document

Construct
Attack Graph

…

Attack Graph

I ——
C —
—
D——

Past
incidents

Events

Factor functions

Learn
parameters

Build
factor graph

Determine
Attack
Stage

𝑠1
𝑠2
𝑠3
𝑠4
𝑠5

=

0.1
0.3
0.1
0.4
0.1

Motivating Example: A Credential Stuffing Attack

Steal credentials / secret
keys

Launch Denial of Service

Send spams

Mine Bitcoins

Target Site

Leaked Credentials

Botnet

Black Markets Password

Compromised Machine

Firewall

File system
/dev/shm

Compile RHEL exploit

Escalate to #root

Attacker

Remote Location

src
seq

dst

ack
…

3 x

Venom Rootkit

Port 9090

Loadable Kernel Module

Userland backdoor

Network scanning
tools

X

Buy, steal, or fish
credentials

1

3 Drop exploit kit

ssh-rsa
AAAAB3…

2 Masquerade

4 Escalate privilege

5 Deploy rootkit

6 Open port upon receiving
port knocking sequence

8 Perform attack payloads

Invisible to network scanning tools

7 Send port knocking sequence
TCP dst + seq = 1221

</>
Automated

guessing

Account takeover $$$

Credential Stuffing: Attacks that exploit leaked
credentials for automated penetration of systems.

𝑧+ 𝑧, 𝑧- 𝑧. 𝑧/

𝑥+ 𝑥, 𝑥- 𝑥. 𝑥/ 𝑥1

𝑧1
𝑧2
𝑧3
𝑧4
𝑧5

= 	

0.1
0.3
0.1
0.4
0.1

𝑧𝑖 ∈ 𝑍, z8 ∈ 0,1 represent	hidden	attack	stages
𝑥𝑖 ∈ 𝑋,	x𝑖 ∈ [1,	|X|]	represent	observed	events

𝑓(𝑠1) 𝑧1
0.10 0

0.90 1

𝑔(𝑥1, 𝑧1, 𝑧2) 𝑥1 𝑧1 𝑧2
? 1 0 0

? 1 0 1

? 1 1 0

? 1 1 1

𝒛𝟏 :	initial	compromise
𝒛𝟐 :	host	hopping
𝒛𝟑 :	escalate	privileges
𝒛𝟒 :	maintain	presence
𝒛𝟓 :	deliver	payload

The most probable attack stage:
”maintain presence”

𝑥1 :	incorrect	logins
𝑥2 :	successful	login
𝑥3 :	sensitive	file	sys	location
𝑥4 :	download	source	file
𝑥5 :	compile
𝑥6 :	new	kernel	module

𝑷 𝒙, 𝒛|𝜽 =
𝟏
𝒁^𝜽𝒄𝑻𝒇𝒄(𝒙𝒄, 𝒛𝒄)
𝒄	∈	𝓒

h(𝑧2) 𝑧2
0.70 0

0.30 1

Graph structure consist of edges
specify link among variables

I ——
C —
D——

Past
Incidents
Dataset D

Independence
Test

Dependent Events

𝑧,𝑥+

𝑧-𝑥-

𝑧/𝑥/

…

Events at run-time

Expectation
Maximization of 𝜃

Factor Functions

𝑧,𝑥+

𝒈(𝒙𝟏, 𝒛𝟏, 𝒛𝟐) 𝒙𝟏 𝒛𝟏 𝒛𝟐

? 1 0 0

… … … …

𝜃ef

Ongoing attacks

Bro logs
System logs
Network flows

Learning graph structure (offline and runtime)
The goal of learning graph structure, i.e., factor graph, is to automatically establish dependencies
among observed events and hidden attack stages by using an Χ,	independence test on training data
D. The dependencies are used to construct a set of model candidates 𝑚i ∈ 𝑀 , e.g., simple model
using only strongest dependencies or complex model using all dependencies.

𝑠𝑐𝑜𝑟𝑒 opq 𝑚i 𝐷 = 𝑚𝑎𝑥tlog	𝑃(𝑥, 𝑧,𝑚i, 𝐷, 𝜃) + 	𝑙𝑜𝑔 𝜃𝑃 𝜃 𝑚i − 𝑑𝑖𝑚 𝑚i 𝑙𝑛|𝐷|

A model candidate𝑚i is scored based on three terms in respective order:
- Goodness of fit with training data (𝑚𝑎𝑥tlog	𝑃(𝑥, 𝑧,𝑚i, 𝐷, 𝜃))
- Entropy of 𝜃 to avoid overfitting and favor model stability (𝑙𝑜𝑔 𝜃𝑃 𝜃 𝑚i

- Complexity of model and availability of training data (𝑑𝑖𝑚 𝑚i 𝑙𝑛|𝐷|)

Learning graph parameters (offline)
The goal of learning graph parameters is to automatically define parameters 𝜃ef
of factor functions in tabular forms.

Expectation Maximization algorithm is used for learning parameters of each
factor function because it can handle missing or incomplete training data, which
is the case for most multi-stage attacks.

Input. Training dataset D of past attacks
Init. Start with a random initialization of 𝜃|

Repeat each iteration until converge:
E-step. Calculate expected likelihood of log likelihood function

𝑄 𝜃~�+ 𝜃~ = 𝐸 𝑧 𝑥, 𝜃~ [log	(𝑃(𝑥, 𝑧, 𝜃
~)]

M-step. Maximize parameters of 𝜃 ~�+

𝜃 ~�+ = 𝑎𝑟𝑔𝑚𝑎𝑥 t 	𝑄 𝜃~�+ 𝜃~

Inference of ongoing attack stages (runtime)
Given a factor graph of an ongoing attack at runtime, inference is to determine
the most likely unknown attack stage and output a confidence level for each stage.

𝑧∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 � 	P(x, z, 𝜃)
At this stage, off-the-shelf inference techniques such as Belief Propagation, Monte
Carlo Markov Chain, or Variational Inference can be employed.

Determine response to the identified
attack stage, e.g., zi = maintain
presence is the most probable attack
stage in this example.0.1

0.3

0.1

0.4

0.1

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5

P(z)

Illustration of the proposed approach in the
context of a credential stuffing attack.

