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Learning Factor Graphs for Preempting Multi-Stage Attacks 
in Cloud Infrastructure
Phuong Cao, Alexander Withers, Zbigniew Kalbarczyk, Ravishankar Iyer
University of Illinois at Urbana-Champaign

Result on learning parameters
Expectation-Minimization algorithm shows a fast 
convergence rate, i.e., 3 iterations, of marginal probability 
of zi for a 3-variable clique.

Goals
• Detect multi-stage attacks that make use of stolen credentials in large 

enterprise networks, e.g., cloud infrastructure
• Employ factor graphs, a probabilistic graphical model, to capture 

attacker behavior and detect malicious activities.
– Learning graph structure that represents dependencies among observed events and attack 

stages

– Learning graph parameters, i.e., factor functions among observed events and hidden attack 
stages, that represents strength of their dependencies using a factor graph correspond to 
ongoing attack

Future Work
1. Automatically build graphs for evaluating 

security of pre-deployed cloud applications

2. Evaluate of learned graphs in terms of 
detection accuracy or model complexity

3. Build models to automatically respond to on-
going attacks
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Motivating Example:  A Credential Stuffing Attack
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Credential Stuffing: Attacks that exploit leaked 
credentials for automated penetration of systems.
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𝑧𝑖 ∈ 𝑍, z8 ∈ 0,1 represent	hidden	attack	stages
𝑥𝑖 ∈ 𝑋,	x𝑖 ∈ [1,	|X|]	represent	observed	events
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𝒛𝟏 :	initial	compromise
𝒛𝟐 :	host	hopping
𝒛𝟑 :	escalate	privileges
𝒛𝟒 :	maintain	presence
𝒛𝟓 :	deliver	payload

The most probable attack stage:
”maintain presence”

𝑥1 :	incorrect	logins
𝑥2 :	successful	login
𝑥3 :	sensitive	file	sys	location
𝑥4 :	download	source	file
𝑥5 :	compile
𝑥6 :	new	kernel	module
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Learning graph structure (offline and runtime)
The goal of learning graph structure, i.e., factor graph, is to automatically establish dependencies 
among observed events and hidden attack stages by using an Χ,	independence test on training data 
D. The dependencies are used to construct a set of model candidates 𝑚i ∈ 𝑀 , e.g., simple model 
using only strongest dependencies or complex model using all dependencies. 

𝑠𝑐𝑜𝑟𝑒 opq 𝑚i 𝐷 = 𝑚𝑎𝑥tlog	𝑃(𝑥, 𝑧,𝑚i, 𝐷, 𝜃) + 	𝑙𝑜𝑔 𝜃𝑃 𝜃 𝑚i − 𝑑𝑖𝑚 𝑚i 𝑙𝑛|𝐷|

A model candidate𝑚i is scored based on three terms in respective order: 
- Goodness of fit with training data (𝑚𝑎𝑥tlog	𝑃(𝑥, 𝑧,𝑚i, 𝐷, 𝜃))
- Entropy of 𝜃 to avoid overfitting and favor model stability (𝑙𝑜𝑔 𝜃𝑃 𝜃 𝑚i

- Complexity of model and availability of training data (𝑑𝑖𝑚 𝑚i 𝑙𝑛|𝐷|)

Learning graph parameters (offline)
The goal of learning graph parameters is to automatically define parameters 𝜃ef
of factor functions in tabular forms.

Expectation Maximization algorithm is used for learning parameters of each 
factor function because it can handle missing or incomplete training data, which 
is the case for most multi-stage attacks.

Input. Training dataset D of past attacks
Init. Start with a random initialization of 𝜃|

Repeat each iteration until converge:
E-step. Calculate expected likelihood of log likelihood function

𝑄 𝜃~�+ 𝜃~ = 𝐸 𝑧 𝑥, 𝜃~ [log	(𝑃(𝑥, 𝑧, 𝜃
~)]

M-step. Maximize parameters of 𝜃 ~�+

𝜃 ~�+ = 𝑎𝑟𝑔𝑚𝑎𝑥 t 	𝑄 𝜃~�+ 𝜃~

Inference of ongoing attack stages (runtime)
Given a factor graph of an ongoing attack at runtime, inference is to determine 
the most likely unknown attack stage and output a confidence level for each stage. 

𝑧∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 � 	P(x, z, 𝜃)
At this stage, off-the-shelf inference techniques such as Belief Propagation, Monte 
Carlo Markov Chain, or Variational Inference can be employed. 
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Illustration of the proposed approach in the 
context of a credential stuffing attack.


