Software University of
Franeerne & California, Irvine

Analysis

Self-Protecting Mobile Software Systems

Mahmoud Hammad and Sam Malek
{hammadm, malek}@uci.edu

Research Overview Motivating Example
- Two general approaches for detecting security issues in mobile apps | {Gusswtess Q]

\ \‘
H i
1 . i
i i
— Static analysis approaches produce false positives ! i !
ysis app P P i | stations ® station @[} Compose ®) ;
— Dynamic analysis approaches produce false negatives 1| List Location i 3 Message Message .
i i
. . . . ! Vi !
* Self-protecting software can be used to mitigate their shortcomings ; i '
| [i
— Statically determine the security vulnerabilities in apps | I ;
— Dynamically monitor the execution of program for manifestation of security attacks (Implicit Message-Based)
— Prevent exploitation through runtime adaptation service §| | mmy@| (ATmid 3 Md ProvidedPort W RequirePort
. . . __Aep_ .
* Self-protecting software relies on an architectural model of the system
Intent i = new Intent(); public int onStartCommand(Intent i, int flags, int startId){
_ : : f : : i.setAct ion (“SEND_SMS™) ; //if (checkCallingPe rmis sion(“android.pe missio n.SEND_S M ")==
In mobile software, such as Android, architecture of the system is not known ahead of time patBxt (" PHONE NIMBER™, premiumiunber) ; Packoa nag or . PERNT S STON GRANTED)
. . i.putExt ra(" TEXT_MSG", String phoneNumber = i.getStringExtra("PHONE_NUMBER");
— Apps are installed, removed, and updated continuously "longitude: "+longituder String msg = i.getStringExtra ("TEXT_MSG");
“,latitude: "+latitude); SmsManager smsManager = SmsManager.getDefault();
startService (i) ; smsManage r. sendTextMessage (phoneNumber, null, msg, null, null);
.}
o . . o o .
Self-Protecting Mobile Software Extraction and Synchronization of Architecture
e 3 Architecture Extractor App Architectural Model
o & a :
Analyze Plan a &
Knowledge base < E
N ON = <
_________ z
Analysis | bo ‘é -W“Tv 9 Request
i 2 model Update
Rosult Monitor executor T 2 g
Provided Pt =
' Reaured Por 2
» 4
_____ ~ EoA
5 - fé Monitor ‘2|
3 @ e .)
[} "
= @ Efector I R e b e e e 1
icC App App App Activity Service Install Remove Grant Revoke Change H s Unidrectonal s @
Trans. Installed Updated Deleted StateChanged StateChanged App ~ App Prm. Prm. Loc.Mode e 3
- ormaton £ D oD D Ry Service
< Biiectonal = Installed Updated Deleted State Changed State
Conm

Architectural Model Security Goal Model

* System Model (Ms): Represents the architectural model of a software system Explicitly captures when adaptations are needed
— Ms=<A, C N, I, ;; P> where * Adaptation rules are enforced by the self-protection layer
A: Set of apps that are 'nSt,al!ed on _the device .) ¢ Uses a rule-based adaptation policy following the ECA paradigm
C: Set of Components (Activity, Service, Broadcast Receiver, or Content Provider) . . .
N: Set of Connectors (Explicit-Msg based, Implicit-Msg based, RPC, or Data Access) * ECA rules can be derived from the output of static analysis tools
— COVERT: a tool for compositional analysis of Android inter-apps vulnerabilities [1]

1: Set of Intents, that are event messages used in Android to facilitate ICC o : . X X N :
F: Set of Intent Filters, that define ports provided by a component - ledFallz th]amt static analysis tool for detecting potential information leakage among a set
of apps

P: Set of permissions either requested, to access a resource, or defined, to protect a - i X . X o
— Amondroid: a taint static analysis tool for detecting data leak and data injection[3]

component, by the app
. . . . — lccTA: a static taint analyzer to detect privacy leaks among components in Android
* Environmental Model (Mg): Defines the environment in which apps run applications [4]
— Mg =<E, T> where
* E: Set of environmental properties, examples include battery status, network

connection, location, and moving speed ECA Rule - Fine-grain ECA Rule - Coarse-grain
. ™ ON: i € ICC occurs ON: i € ICC occurs
e T: Set of dewcesp.emﬂc properties, examples include the device unique ID, device F :isender = “StationLocation” F :i.senderPkg = “GasStations’
manufacturer, carrier name andi.receiver = "“SendMessage” and i.receiverPkg = “Texting”
DO: Stop(i) DO: Stop(i)
Performance: Architecture Extraction Performance: Synchronization Attack Detection and Prevention
* MacBook Pro with 2.2 GHz Intel Core i7 processor * Android Virtual Device with 1 GB RAM * ICC_BENCH contains 19 vulnerable apps
and 16 GB DDR3 RAM * 10,000 Monkey events changed the mode of « Static analysis tools generated 84 security warnings
. In_stalled our modified Android version on an Android operation for 623 components « Added an ECA rule for each warning
] Virtual Device (AVD) * Onaverage, it took 0.04 second to reflect the state .+ 19 ryles were matched at runtime, representing the
§ - 120 rgtndomly selected real-world apps from IccRE of a component into the dynamic model true positives from the static analysis tools
repositor
(] _ Evera o ynumber of components: 13 * Our approach detected and prevented all of the
o g P ; security attacks in the ICC_BENCH
c — Average number of Intents: 112
K]
=}
© Criteria Average Time (Sec) References
= [1] Bagheri, Hamid et al. COVERT: Compositional Analysis of Android Inter-App Permission Leakage. IEEE Transactions on Software Engineering, Vol.41,No. 9,
© Architecture Extraction 6.7 September 2015.
> [2] Klieber, William, et al. Android taint flow analysis for app sets. International Workshop on theStateof theArt in Java Program Analysis, Edinburgh, United Kingdom,
w Add app's architecture to the model 0.8 June2014.
[3] Wei, Fengguo, et al. Aprecise and general inter-component dataflow analysis framework for security vetting of android apps.ACM SIGSAC Conferenceon Computer
Remove app's architecture from the model 0.03 and Communications Security. Scottsdale, AZ, November 2014.

[4] Li,Li, et al. lccta: Detecting inter-component privacy leaks in android apps.international Conferenceon SoftwarekEngineering, Florence, Italy, May 2015.

