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• But what if that is not enough?

• Social unrest: government may shut down any, especially encrypted, 

transmissions

• Military: hide presence of any activity

• Privacy intrusion: it’s often the “meta-data” that is important

• Covert communication conceals presence of messages in the first 
place

• What are the fundamental limits of covert 
communication?

• Need quantum information theory to study physical limits
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Prior art: Steganography

 Why not use digital steganography?

– Embedding overwrites covertext noise, which we can’t necessarily access in noisy 

communication channel scenario

– Requires transmission of stegotext, inapplicable when transmissions are prohibited

Source: User Cyp, Wikipedia
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Spread spectrum communication

 What is “safe” power level and how much can be 

transmitted without detection?
– Square root law for AWGN channels [Bash12, Bash13a]: must use average per-symbol 

power 𝑃𝑓 = 𝑂  1 𝑛
over 𝑛 channel uses; transmit no more than 𝑂 𝑛 bits total

 Optical detection systems are quantum-noise limited: must use 

quantum mechanics to derive limits under the most powerful 

adversary permissible by physics

Original signal

Noise floor

Transmitted signal
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r

Frequency
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Covert Communication Model

 Alice has a noisy channel to Bob

Clipart source:

Artist Gerald_G, openclipart.org
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Covert Communication Model

 Alice has a noisy channel to Bob

 Alice and Bob prepare by sharing a secret

 Willie monitors his noisy channel from Alice for transmissions

Clipart source:

Artist Gerald_G, openclipart.org
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Hypothesis testing

 Willie attempts to classify observations of Alice’s channel as 

either noise or signal corrupted by noise

– Binary hypothesis test

 Willie’s probability of error

 Alice desires 

Willie decides he saw

Noise Signal+Noise

quiet

transmitting

Alice is

“Covertness” criterion
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Noiseless measurements on 
pure-loss channel

 Bosonic channel is the quantum-mechanical description of 

an optical channel with linear loss (beamsplitter)

Vacuum environment
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Noiseless measurements on 
pure-loss channel

 Bosonic channel is the quantum-mechanical description of 

an optical channel with linear loss (beamsplitter)

 No covert communication possible!

 Conditions unlikely to ever occur practically

– Noisy environment (Planck’s Law), non-ideal detectors 

Vacuum environment

Semi-ideal single photon detector (SPD):

•

• no false alarms

• can miss transmissions

Any receiver

Any pre-shared secret

Arbitrary input over

𝑛 optical modes
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Thermal noise channel

 Beamsplitter models the optical channel

Thermal environment
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Thermal noise channel

 Beamsplitter models the optical channel

Thermal environment

Homodyne receiver or

noisy single photon 

detector:
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Thermal noise channel

 Beamsplitter models the optical channel

 Square root law: Alice can reliably transmit 𝑂 𝑛 covert bits 

using 𝑛 optical modes, and no more

– Mean photon number (power) per mode 𝑁𝑆 = 𝑂
1

𝑛
photons to hide in the noise

Thermal environment

Quantum-optimal receiver

Homodyne receiver or

noisy single photon 

detector:
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Experimental setup

Alice
1 ns pulses

1.5 m wavelength

Variable 
attenuator

Willie
(SPD)

Bob
(SPD)

MirrorPBSC

Message generation,
encoding

NI PCIe-6537 DAQ board

Detection Message
decoding

Linear
polarizer HWP

Laser 
driver

1 MHz clock
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Experimental setup

NI DAQ Board

Willie’s

SPD

Output (laser)

Trigger

Bob’s

SPD

Input  (detector)

trigger

External clock

Alice

BobWillie Pulsed laser

Pulse

generator

Temperature 

control

Variable

attenuator
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Experimental setup
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Optical modes (𝑛)

Careful Alice,

𝑁𝑆 =  0.2210
𝑛

Careless Alice,

𝑁𝑆 =  0.0011
4 𝑛

𝑁𝑆 = 0.0013

Dangerously

careless Alice

𝑁𝑆 = 0.0005

Points: average of 100 experiments using

(31,15) R-S code over order 𝑄 = 32 PPM;

95% CI negligible

Lines: maximum throughput (Shannon)
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Willie detection error probability

Careful Alice,

𝑁𝑆 =  0.2210
𝑛

Careless Alice,
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0.1

0.2
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0.4

0.5

Willie’s optimal detector: LRT

LRT statistic: total click count

Line: Gaussian approximation

Solid fill: 100 experiments, 95% CI ±0.136

Clear fill: 10k MonteCarlo sims, 95% CI ±0.014

Optical modes (  ) 11/1/2016 27

𝑁𝑆 = 0.0013

𝑁𝑆 = 0.0005



What is the optimal center bandwidth?
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Lesser diffraction loss,

more spatial modes;

Less background noise Greater diffraction loss,

less spatial modes;

More background noise

𝑛 =  𝑛𝑇
𝑇×𝑊

× 𝑛𝑆 × 2
time space polarization#modes
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JR

JR

Covert use of existing wired 

networks [Soltani15, Soltani16]

Covert sensing
Covert optical network

Covert RF network

Dynamic switching between 

jamming and relaying

Piggybacking

covert info on

existing 

transmissions

Jamming enables 

𝑂 𝑛 covert bits in 

𝑛 channel uses 
[Sobers15, Sobers16]

 Ongoing projects:
– DARPA Defense Sciences 

Office QUIET program (BBN 

and UMass)

– NSF Limits and Algorithms for 

Covert Communications 

(UMass)

asynchrony issues 
[Bash14, Goeckel15, 

Bash16]

space
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Proof construction for practical 
receivers

 On-off keying modulation, random code, ML decode

– Probability of “on” pulse                           ensures stealth with secret 

codebook

0 0 0 … 0 0

0 0 0 … 0 1

1 1 1 … 1 1

…

Messages Random codewords

optical modes
bits
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Proof construction for practical 
receivers

 On-off keying modulation, random code, ML decode

– Probability of “on” pulse                           ensures stealth with secret 

codebook

 Easy analysis but implementation impractical
– Desire to use structured, public error correction code (ECC)

0 0 0 … 0 0

0 0 0 … 0 1

1 1 1 … 1 1

…

Messages Random codewords

optical modes
bits
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Pulse-position modulation (PPM) 
signaling

 Pulse-position modulation (PPM) signaling uses pulse 

location to encode value:

 Then use an outer ECC on top of PPM

 Challenge for covert communication: every PPM symbol 

requires a pulse, zero pulses not allowed

Value:

optical modes

PPM frame

12Q
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Using PPM Alphabet

 Solution: given       possible PPM frames, Alice and Bob 

secretly agree on a random subset     to use for message 

transmission, 

 Bob ignores the “empty” frames, but Willie cannot since he 

doesn’t know where they are

Alice transmits:

Bob receives:

Willie receives:

- transmitted pulses - dark clicks- PPM frame
optical modes

PPM frames,     optical modes
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Covert communication with PPM

 Alice and Bob also construct vector                             secretly, 

with each     chosen uniformly at random from 

 Alice transmits                                 using frames in

 Bob subtracts    modulo    , then decodes

 Willie cannot exploit ECC structure

 SRL: Alice can reliably transmit                            covert bits in

optical channel uses with public random code

 However, we use Reed-Solomon for experiments 

CodewordTransmission
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Experimental design

 Data

– 100 testbed experiments per data point

– 10k Monte-Carlo simulations per data point (Willie only)

 Simulate optical channel induced by laser-light transmitter and SPD 

using measured testbed characteristics

 Bob

– 𝑄 = 32 PPM, (31,15) Reed-Solomon ECC

– Report average number of decoded bits

– Observed characteristics  max throughput from Shannon capacity

 Willie

– Optimal detector = LRT

– Estimate          from empirical distributions of LRT statistics

– LRT statistic ≈ total click count  Gaussian approximation
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