
Building a
High-Assurance
Separation Kernel
using Programatica

Mark P Jones

High Confidence Software & Systems
March 2005

The Oregon Separation Kernel:

Osker

Native Apps POSIX
POSIX Apps

Linux
Linux Apps

Linux
Linux Apps

Hardware

Runtime System

A working µ-kernel implementation with very
high assurance of separation between domains

(interference only as permitted by explicit policy)

How do you build things like this?
� Good design, good architecture

� Sound engineering, informal reasoning

� Cope with an abundance of small details

� Rely on behavior of underlying platform

� The Programatica Approach:
“Programming as if properties matter”

How do we build things like this?
� Good design, good architecture
� Reuse the good ideas!
� Monads, ADTs: “separation by construction”

How do we build things like this?
� Good design, good architecture

� Sound engineering, informal reasoning
� Capture specifications/programmer expectations as

embedded properties (“Extreme Formal Methods”)
� Integrate with (formal & informal) validation tools

How do we build things like this?
� Good design, good architecture

� Sound engineering, informal reasoning

� Cope with an abundance of small details
� Raise the level of abstraction
� Leverage types: “mostly types, a little proving”

How do we build things like this?
� Good design, good architecture

� Sound engineering, informal reasoning

� Cope with an abundance of small details

� Rely on behavior of underlying platform
� “Trusted hardware” … but trusted to do what?
� Formalize and document assumptions

Ingredients:
� Programatica:

Certification

� Haskell:
Modeling, implementation, tractable reasoning

� L4:
Keeping it real

� House:
Feasibility, prototyping

Programatica

� Develop methodologies, tools, and foundations to
support the construction and certification of high-
assurance systems

� Integrate a broad and open spectrum of assurance
techniques (code review, testing, formal methods, …)

� Support evolving code, evidence, and assurance
requirements (e.g., track dependencies, revalidate, …)

� Apply to assurance of security properties in complex
software artifacts of engineering significance

Programatica Goals:

The Programatica Vision:

Instrumenting
compiler

Random
test generator

Automatic Decision
Procedures

Interactive
Proof Editor

Model
Checking

User supplied,
domain-specific
toolsets...

Type
checking

Execute
& test

Code review

Theorem
Proving

lo hi
assure-o-meter

Reporting,
Analysis,

Management

Program Development

Environment
& Property Certification

The Programatica Browser:

� Model Checking of Monadic Code

� Isabelle
� Logical framework, tactic-based theorem prover

� Testcases
� Individual test cases / regression testing

� QuickCheck
� Random testing

� Alfa
� Interactive proof editor based on type theory

� Plover
� The P-logic verifier

� “I say so”
� A person signs their name by an assertion

implemented,
automated,
maturing

hand
translation

new
development

Programatica Servers:

Early Case Study:
� Based on a Hypothetical Crypto Chip Design

� Modeled in Haskell (~260 LOC)

� GUARANTEED separation between channels

Alg1

Alg2

Alg3

Conceptual View

Upper Engine

Shared Memory

Lower Engine

Registers RegF

RegF

RegF
RegF

Algorithm

Alg

Alg

Alg

Implementation

assert Separation

= All algs :: Algs.

All select :: (ChannelId → Bool).

{ filter (select . fst) . chip algs }

===

{ chip algs . filter (select . fst) }

Alg1

Alg2

Alg3

Alg1

Alg2

Alg3

=
The Separation Property:

� Concluded with formal proof using the Alfa server

Haskell

Haskell:
� An expressive, purely functional programming

language

� A semantically rich, formal modeling language

� A “(semi-) formal method”

Design Document:

Executable Model:

Why Haskell?
� Purity: the result of a function depends only on the

argument value (i.e., no hidden dependencies)

� Polymorphic types: powerful and expressive;
parametricity provides "theorems for free"

� Formal semantics: a foundation for meaningful
assurance guarantees

� Powerful abstract datatypes: e.g., modular, scalable
encapsulation and reasoning about effects using monads

Scalability:

µ-kernel vs. monolithic kernel

Haskell as a high-level language

“mostly types, …”

Note: Diagram not to scale … ☺

Future Prospects:
� Performance is not a primary goal … but it is

an issue:
� Paths through a µ-kernel must be short and fast
� Runtime system assurance: e.g., garbage collection

� On the table:
� Mechanisms for efficient construction and

manipulation of data structures at the bit-level
� Small size provides opportunities for aggressive

optimization and whole program analysis
� Default to strict instead of lazy evaluation

L4

What is L4?
� L4 is a “second generation” µ-kernel design

� Original Design: Jochen Liedtke
� Original goal: To show that µ-kernel based systems

are usable in practice with good performance

� Keep it simple:
� Original API had just 7 system calls dealing with key

abstractions:
� Address spaces: Memory protection
� Threads: Concurrency
� IPC: Inter Process Communication

Why Pick L4?
� L4 is industrially and technically relevant

� Multiple working implementations (Pistachio, Fiasco, etc…)
� Multiple supported architectures (ia32, arm, powerpc, mips, sparc, …)
� Already used in a variety of domains, including real-time, security,

virtual machines & monitors, etc…

Why Pick L4?
� L4 is industrially and technically relevant

� L4 is small enough to be tractable
� Original implementation ~ 12K executable
� Recent/portable/flexible implementations ~ 10-20 KLOC C++

Why Pick L4?
� L4 is industrially and technically relevant

� L4 is small enough to be tractable

� L4 is real enough to be interesting
� For example, we can run multiple, separated instances of Linux

(specifically: L4Linux, Wombat) on top of an L4 µ-kernel

Why Pick L4?
� L4 is industrially and technically relevant

� L4 is small enough to be tractable

� L4 is real enough to be interesting

� L4 is a good representative of the target domain and
a good tool for exposing core research challenges
� Threads, address spaces, IPC, preemption, interrupts, etc… are core

µ-kernel concepts, regardless of API details
� It should be possible to retarget to a different API or µ-kernel design

House

An OS in Haskell!?
� OS implementations involve:
� low-level data structure manipulation, “bit twiddling”
� asynchronous interrupts, MMU, DMA, IO ports, …

� Haskell may not be your “typical systems
programming language” …

� But details like these are within reach …

Page Table Maintenance:
type PAddr -- physical addresses
type VAddr -- virtual addresses
type PageMap -- page map references

data PageInfo = PageInfo { pAddr :: PAddr,
writeable:: Bool,
dirty :: Bool,
accessed :: Bool }

setPage :: PageMap → VAddr → Maybe PageInfo → H Bool
getPage :: PageMap → VAddr → H (Maybe PageInfo)

assert {do setPage pm va pi; getPage pm va}
===

{do setPage pm va pi; return pi}

House:

Concurrent threads
Asynchronous exceptions
Garbage collection

Address space management
Hardware interrupts/faults
Initial memory configuration

Run a.out executables
Page fault and syscall handlers
Haskell window system and applications
Cooperating concurrent processes
Device drivers (keyboard/mouse/text video/

graphics video/network)

GHC RTS

House

hOp

Haskell

C

C

x86

On Bare Metal:

Relating Osker & House:

House
Impl.

Osker
Model Different Shapes

⇔
Different Interfaces

Interface
=

Signature + Properties

Modular Construction:

House
Impl.

x86

Osker
Model

HW

Modular Construction:

HW

Osker
Model

x86

House
Impl.Common

“UserSpace”
Interface

execContext :: PageMap → Context → H (Interrupt, Context)

assert All m, pm, pa, c.
m ::: NotMapped pm pa

==> m ::: Commutes {readPhys pa} {execContext pm c}

Modular Certification:

HW

Osker
Model

x86

House
Impl.

` H

U ` S

X ` UH ` U

` X

H = Properties of HW model
U = Properties of Userspace interface
S = Osker separation properties
X = Properties of x86 hardware

� Compositional certification

� Consistency checking on U

� Design input on X

Combining Osker & House:

HW

Osker
Model

x86

House
Impl.

x86

Osker
Model

A First Implementation
of Osker on Bare Metal

Standard C code, …
#define wait 1
#define sync 2
#define src 3
#define dest 4

extern void lock(), sender(), receiver();

void start() {
fork(sync, lock);
fork(src, sender);
fork(dest,receiver);
stop();

}

void lock() {
for (;;) {

recv(0, wait);
send(getSender(), wait);

}
}

#define LOCK(x) send(sync, wait); \
x; \
recv(sync, wait)

void sender() {
LOCK(printf("I am the sender\n"));
int i;
for (i = 0; i<10; i++) {

setMsg(i);
send(dest, wait);
LOCK(printf("I just sent %d\n", i));

}
stop();

}

void receiver() {
int total = 0;
LOCK(printf("I am the receiver\n"));
for (;;) {

int x;
int s;
recv(src, wait);
x = getMsg();
s = getSender();
total += x;
LOCK(printf(“Received %d from %d,

total is %d\n", x, s, total));
}
stop();

}

Osker
system calls

#defines

printf()

malloc(), protected execution
(divide by zero, segment violation,

time slice exhausted, etc…), …

Standard tools, …
#define wait 1
#define sync 2
#define src 3
#define dest 4
extern void lock(), sender(), receiver();

void start() {
fork(sync, lock);
fork(src, sender);
fork(dest,receiver);
stop();

}

void lock() {
for (;;) {

recv(0, wait);
send(getSender(), wait);

}
}

#define LOCK(x) send(sync, wait); \
x; \
recv(sync, wait)

void sender() {
LOCK(printf("I am the sender\n"));
int i;
for (i = 0; i<10; i++) {

setMsg(i);
send(dest, wait);
LOCK(printf("I just sent %d\n", i));

}
stop();

}
void receiver() {

int total = 0;
LOCK(printf("I am the receiver\n"));
for (;;) {

int x;
int s;
recv(src, wait);
x = getMsg();
s = getSender();
total += x;
LOCK(printf(“Received %d from %d,total is %d\n", x, s, total));

}
stop();

}

a.out
executable

gcc

Compile, boot, and run:

gcc
a.out

executable

grub

void sender() {
LOCK(printf("I am the sender\n"));
int i;
for (i = 0; i<10; i++) {

setMsg(i);
send(dest, wait);
LOCK(printf("I just sent %d\n", i));

}
stop();

}
void receiver() {

int total = 0;
LOCK(printf("I am the receiver\n"));
for (;;) {

int x;
int s;
recv(src, wait);
x = getMsg();
s = getSender();
total += x;
LOCK(printf(“Received %d from %d,total is %d\n", x, s, total));

}
stop();

}

#define wait 1
#define sync 2
#define src 3
#define dest 4
extern void lock(), sender(), receiver();

void start() {
fork(sync, lock);
fork(src, sender);
fork(dest,receiver);
stop();

}

void lock() {
for (;;) {

recv(0, wait);
send(getSender(), wait);

}
}

#define LOCK(x) send(sync, wait); \
x; \
recv(sync, wait)

One Source, Many Uses:

Design Document:

Executable Model:

Certification Target:

Practical Implementation:

One Source, Many Uses:

Our Design Document

is also

Our Executable Model

and also

Our Certification Target

and also

Our Running Implementation

Why “House”?

� the “Haskell Users Operating
System Environment”

Why “House”?

� … than if you only have Windows …

� You are more secure in a House …

Next Steps

Next Steps:
� OS Model: Continuing transition to a more

accurate/more complete (and more complex) L4 API

� Hardware Model: Extensions to describe interrupts
and hardware concurrency mechanisms

� Establish formal separation property

� Continued evolution of bare metal implementation

Hardware

OS

Runtime

Osker Model

Test Apps

Hardware…

hOP/HBM

Osker Model

Test Apps

Hardware
µ-HBM

Osker

Real Apps

2 31

Increasing RTS Assurance:
� House illustrates that we can run Haskell programs on

a very thin OS layer, obeying a small set of properties

� The runtime system (RTS) is large, complex, and
written in C, which makes it hard to build confidence in
the overall system

� We need high-confidence versions of two main
services:

� Pre-emptive concurrency (needed for interrupt handling)

� Garbage collection (possibly real-time)

Possible approaches to high-
confidence concurrency:

� Model RTS in Haskell
� Prove key properties about the model;
� Transfer results back to C code.
� (The Galois “Haskell on Bare Metal” project is pursuing this.)

� Remove pre-emptive concurrency from the RTS:
� Leverage Osker concurrency, handle interrupts explicitly
� Use a language subset for which we can accurately bound

execution times

� Develop ad-hoc proof of correctness for
conventional GC using recently developed
separation logics.

� Rewrite the Osker model in a language variant
with a region-based type system
� Should require only simple RTS ⇒ relatively easy to

validate

Possible approaches to high-
confidence garbage collection:

