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The Oregon Separation Kernel:
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Osker
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A working u-kernel implementation with very
high assurance of separation between domains

(interference only as permitted by explicit policy)



How do you build things like this?

= Good design, good architecture
= Sound engineering, informal reasoning
= Cope with an abundance of small details

= Rely on behavior of underlying platform

= The Programatica Approach:
“Programming as if properties matter”



How do we build things like this?

= Good design, good architecture
= Reuse the good ideas!
= Monads, ADTs: “separation by construction”



How do we build things like this?

= Sound engineering, informal reasoning

= Capture specifications/programmer expectations as
embedded properties (“Extreme Formal Methods”)

= Integrate with (formal & informal) validation tools



How do we build things like this?

= Cope with an abundance of small details
= Raise the level of abstraction
= Leverage types: "mostly types, a little proving”



How do we build things like this?

= Rely on behavior of underlying platform
= “Trusted hardware” ... but trusted to do what?
* Formalize and document assumptions



Ingredients:

= Programatica:
Certification

= Haskell:
Modeling, implementation, tractable reasoning

= L4
Keeping it real

= House:
Feasibility, prototyping



Programatica



Programatica Goals:

= Develop methodologies, tools, and foundations to
support the construction and certification of high-
assurance systems

= Integrate a broad and open spectrum of assurance
techniques (code review, testing, formal methods, ...)

= Support evolving code, evidence, and assurance
requirements (e.g., track dependencies, revalidate, ...)

= Apply to assurance of security properties in complex
software artifacts of engineering significance



The Programatlca Vision:
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The Programatica Browser:

Programatica Haskell Browser: Perms
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Programatica Servers:

= "] say so”
= A person signs their name by an assertion

Testcases o
= Individual test cases / regression testing

QuickCheck 9
= Random testing
Plover 2
= The P-logic verifier
Alfa Ly
= Interactive proof editor based on type theory
Isabelle o)
= Logical framework tactic-based theorem prover

Model Checking of Monadic Code

-
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development



Early Case Study:

= Based on a Hypothetical Crypto Chip Design

Alg 1 |:> Upper Engine |:>
I
| Shared Memory | |Registers RegH | Alg
Algz I I RegF | Alg
Lower Engine calaf )
RegH
Alg; =

Algorithm

Conceptual View Implementation

= Modeled in Haskell (~260 LOC)

= GUARANTEED separation between channels



The Separation Property:

Alglg E Alg,
AIgZ ] Algz
Alg;

Alg;

assert Separation
= All algs :: Algs.
All select :: (ChannelId — Bool).
{ filter (select . fst) . chip algs }

{ chip algs . filter (select . fst) }

= Concluded with formal proof using the Alfa server



Haskell



Haskell:

= An expressive, purely functional programming
language

= A semantically rich, formal modeling language

= A “(semi-) formal method”



Design Document:
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xecutable Model:
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Why Haskell?

= Purity: the result of a function depends only on the
argument value (i.e., no hidden dependencies)

= Polymorphic types: powerful and expresswe
parametricity provides "theorems for free"

= Formal semantics: a foundation for meaningful
assurance guarantees

= Powerful abstract datatypes: e.g., modular, scalable
encapsulation and reasoning about effects usmg monads



Scalability;

1yl

u-kernel vs. monolithic kernel

Haskell as a high-level language

4

“mostly types, ...”

Note: Diagram not to scale ... ©



Future Prospects:

= Performance is not a primary goal ... but it is

an issue:
= Paths through a p-kernel must be short and fast

= Runtime system assurance: e.qg., garbage collection

= On the table:

= Mechanisms for efficient construction and
manipulation of data structures at the bit-level

= Small size provides opportunities for aggressive
optimization and whole program analysis

= Default to strict instead of lazy evaluation



L4



What is L47

= |4 is a "second generation” u-kernel design

= Original Design: Jochen Liedtke

= QOriginal goal: To show that u-kernel based systems
are usable in practice with good performance

= Keep it simple:
= Original API had just 7 system calls dealing with key
abstractions:
= Address spaces: Memory protection

= Threads: Concurrency
= JPC: Inter Process Communication



Why Pick L4?

= |4 is industrially and technically relevant
= Multiple working implementations (Pistachio, Fiasco, etc...)
= Multiple supported architectures (ia32, arm, powerpc, mips, sparg, ...)

= Already used in a variety of domains, including real-time, security,
virtual machines & monitors, etc...



Why Pick L4?

= |4 is small enough to be tractable
= QOriginal implementation ~ 12K executable
= Recent/portable/flexible implementations ~ 10-20 KLOC C++



Why Pick L4?

= |4 is real enough to be interesting

= For example, we can run multiple, separated instances of Linux
(specifically: L4Linux, Wombat) on top of an L4 p-kernel



Why Pick L4?

= |4 is a good representative of the target domain and

a good tool for exposing core research challenges

= Threads, address spaces, IPC, preemption, interrupts, etc... are core
u-kernel concepts, regardless of API details

= [t should be possible to retarget to a different API or u-kernel design



House



An OS in Haskell!?

= OS implementations involve:
= low-level data structure manipulation, “bit twiddling”
= asynchronous interrupts, MMU, DMA, IO ports, ...

= Haskell may not be your “typical systems
programming language” ...

» But details like these are within reach ...



Page Table Maintenance:

type PAddr —— physical addresses
type VAddr -— virtual addresses
type PageMap —-— page map references
data PageInfo = PageInfo { pAddr :: PAddr,
writeable :: Bool,
dirty :: Bool,
accessed :: Bool }
setPage :: PageMap — VAddr — Maybe PageInfo — H Bool
getPage :: PageMap — VAddr — H (Maybe PageInfo)
assert {do setPage pm va pi; getPage pm va}

{do setPage pm va pi; return pi}



House:

Run a.out executables

Page fault and syscall handlers

House Haskell window system and applications
Cooperating concurrent processes

Haskell | Device drivers (keyboard/mouse/text video/

graphics video/network)

Concurrent threads

GHC RTS Asynchronous exceptions
Garbage collection

C

Address space management
hOp C Hardware interrupts/faults
Initial memory configuration

X86
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Relating Osker & House:

Osker |
Model Different Shapes

&
Different Interfaces

Interface

Signature + Properties



Modular Construction:

Osker
Model

HW X86




Modular Construction:

Osker
Model Common
{71 Userspace” [ )
Interface
LU T~
HW X86
execContext :: PageMap — Context — H (Interrupt, Context)

assert All m, pm, pa, C.
m ::: NotMapped pm pa

==> m ::: Commutes {readPhys pa} {execContext pm c}



Modular Certification:

UFS
Osker
Model

HF U

4 U e
HW =

Properties of HW model
Properties of Userspace interface
Osker separation properties
Properties of x86 hardware

H
U
S
X

|_X W
X86

= Compositional certification
= Consistency checking on U

= Design input on X



Combining Osker & House:

Osker
Model

—)

HW

Osker
Model

~_/ \_

X86

(=

A First Implementation
of Osker on Bare Metal

X86




Standard C code, ...

#define
#define
#define
#define

wait 1
sync 2
src 3
dest 4

#defines

extern void lock (), sender (), receiver();

void start () {
fork (sync, lock);
fork(src, sender);
fork (dest, receiver) ;
stop () ; [~

} Osker

void lock () { systern Ca”S
for (;;) |

recv (0, wait);
send (getSender (), wait);

}

}

#define LOCK (x) send(sync, wait); \

x; \

void sender () {
LOCK (printf ("I am the sender\n")):;
int i;
for (i = 0; 1i<10; 1i++) {
setMsg (i) ;

send (dest, wait);

LOCK (printf ("I just sent %d\n",
}
stop () ;

1))

}

vold receiver ()
int total = 0
LOCK (printf ("
for (;;) |
int x;
int s;
recv(src, wait);
getMsg () ;
s = getSender();

total += x; pr“1tf()

LOCK (printf (“Received %d from %d,
total is %d\n", x, s, total));

{
I am the receiver\n"));

X =

malloc(), protected execution
(divide by zero, segment violation,
time slice exhausted, etc...), ...

}
stop ()




Standard tools, ...

#define wait 1
#define sync 2
#define src 3
#define dest 4

extern void lock(), sender(), receiver();

void start() {
fork (sync, lock);
fork (src, sender);
fork (dest,receiver) ;
stop() ;

}

void lock() {
for (;;) {
recv (0, wait);
send (getSender (), wait);
}
}

#define LOCK(x) send(sync, wait); \
%\
recv(sync, wait)

void sender() {
LOCK (printf ("I am the sender\n"));

int i;
for (i = 0; i<10; i++) {
setMsg (i) ;

send (dest, wait);
LOCK (printf ("I just sent %d\n",
i)
}
stop() ;
}

void receiver() {
int total = 0;
LOCK (printf ("I am the receiver\n"));
for (;;) {
int x;
int s;
recv(src, wait);
x = getMsg();
s = getSender();
total += x;
LOCK (printf (“Received %d from %d,
total is %d\n", x, s, total));
}
stop() ;

gcc

a.out
executable




Compile, boot, and run

#define wait 1
#define sync 2

void sender() {
LOCK (printf ("I am the sender\n"));

#define src 3 int i;
#define dest 4 for (i = 0; i<10; i++) {
setMsg (i) ;

extern void lock(), sender(), receiver(); send (dest, wait);

LOCK (printf ("I just sent %d\n",

void start() { i));
fork (sync, lock); }
fork (src, sender); stop() ;
fork (dest, receiver) ; }
stop() ;
} void receiver() {

int total = 0;
void lock() {

for (;;) { for (;;) {
recv (0, wait); %nt x;
send (getSender (), wait); int s;
} recv(src, wait);
} x = getMsg();
= getSender() ;
#define LOCK(x) send(sync, wait); \ total += x;
PYIRY LOCK (printf (“Received %d from %d,

recv (sync, wait) total is %d\n", x, s, total));

}
stop() ;

CC
J a.out

LOCK (printf ("I am the receiver\n"));

executable

grub

JJJJ

JJJJ



One Source, Many Uses:
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Certification Target:
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Practical Implementation:
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One Source, Many Uses:

Our Design Document
is also

Our Executable Model
and also

Our Certification Target
and also

Our Running Implementation



Why “"House™?

= the "Haskell Users Operating
System Environment”



Why “"House™?

= YOU are more secure in a House ...

—

.........

[T

nm...q.!' l ]1r

= ... than if you only have Windows ...



Next Steps



Next Steps:

OS Model: Continuing transition to a more

accurate/more complete (and more complex) L4 API

Harg
and

Esta

blish formal separation property

ware Model: Extensions to describe interrupts
nardware concurrency mechanisms

Continued evolution of bare metal implementation

-

Test Apps

Osker Model

Runtime

OS

Hardware

=

Test Apps

Osker Model

hOP/HBM

Hardware...

Real Apps

Osker

u-HBM

Hardware




Increasing RTS Assurance:

= House illustrates that we can run Haskell programs on
a very thin OS layer, obeying a small set of properties

= The runtime system (RTS) is large, complex, and
written in C, which makes it hard to build confidence in
the overall system

= We need high-confidence versions of two main
services:

= Pre-emptive concurrency (needed for interrupt handling)

= Garbage collection (possibly real-time)



Possible approaches to high-
confidence concurrency:

= Model RTS in Haskell
= Prove key properties about the model;
= Transfer results back to C code.
= (The Galois “"Haskell on Bare Metal” project is pursuing this.)

= Remove pre-emptive concurrency from the RTS:
= |Leverage Osker concurrency, handle interrupts explicitly

= Use a language subset for which we can accurately bound
execution times



Possible approaches to high-
confidence garbage collection:

= Develop ad-hoc proof of correctness for
conventional GC using recently developed
separation logics.

= Rewrite the Osker model in a language variant
with a region-based type system

= Should require only simple RTS = relatively easy to
validate



