Building a
High-Assurance
Separation Kernel
using Programatica

Mark P Jones

High Confidence Software & Systems
March 2005

The Oregon Separation Kernel:

Linux Apps| |Linux Apps POSIX Apps
Linux Linux Native Apps POSIX

Osker

Runtime System

Hardware

A working u-kernel implementation with very
high assurance of separation between domains

(interference only as permitted by explicit policy)

How do you build things like this?

= Good design, good architecture
= Sound engineering, informal reasoning
= Cope with an abundance of small details

= Rely on behavior of underlying platform

= The Programatica Approach:
“Programming as if properties matter”

How do we build things like this?

= Good design, good architecture
= Reuse the good ideas!
= Monads, ADTs: “separation by construction”

How do we build things like this?

= Sound engineering, informal reasoning

= Capture specifications/programmer expectations as
embedded properties (“Extreme Formal Methods”)

= Integrate with (formal & informal) validation tools

How do we build things like this?

= Cope with an abundance of small details
= Raise the level of abstraction
= Leverage types: "mostly types, a little proving”

How do we build things like this?

= Rely on behavior of underlying platform
= “Trusted hardware” ... but trusted to do what?
* Formalize and document assumptions

Ingredients:

= Programatica:
Certification

= Haskell:
Modeling, implementation, tractable reasoning

= L4
Keeping it real

= House:
Feasibility, prototyping

Programatica

Programatica Goals:

= Develop methodologies, tools, and foundations to
support the construction and certification of high-
assurance systems

= Integrate a broad and open spectrum of assurance
techniques (code review, testing, formal methods, ...)

= Support evolving code, evidence, and assurance
requirements (e.g., track dependencies, revalidate, ...)

= Apply to assurance of security properties in complex
software artifacts of engineering significance

The Programatlca Vision:

Type < [- User supplied,
l;dcheckmg Prog 'am Developme t domain- specm-c
Tl : toolsets —
Execute / &P Eﬂrtxtmceft'fca* n Interactive
Proof Editor

test / EEnV|ro,nment
Randorm \ Theorem

test generator _I?ﬂrovmg
= A
?“

Code review Model
Checking
Instrumenting Automatic Decision
compiler Procedures
|

‘ ‘ Reporting,
> Analysis,
Ma nagement assure-o-meter

The Programatica Browser:

Programatica Haskell Browser: Perms

| File = | view [E | Windows 5] Cert [|

Files

OkMonad.lhs

nterface.lhs
MonadT.lhs

o

=
— = — —
o =EE ta
EEEE@:EEg EI i i
= EE
zl |2

=]
=
=]
=
2

}EE@iE
2= |2
(1]

Module Graph I—CI

Physkem lhs
i |

=10 x|

File: |F‘Er‘ms+ lh=

El El Module: |P8r‘m3

| |Impurts EI| |Impurted By EI|

[ra

I assert CombinePermsAzsoc

/
| assert CombinePermnsConnutatived S8

| assert IntersectPermsCommutative =

I assert UnionPermsCommutative =
The “haf(&%)} operation can be used

to another, If & sending thread has

LE]

I = @All op, Associative op == Hzsociative {combinePerms opl

I = All op, Commutative op == Commutative {combinePerms opl

| assert IntersectPermsfiszoc = Associative (FEN) v

I aszert UnionPermsfssoc = fssociative (N4 v

Q
Commutative (/&%) v

Conmutative (%0/4) v

to enzure that permizzions

are not increazed when an object iz paszed from one thread

permizzions “haipt on a

Fermns/AlConbinePermsCommutatives:
Certificate marked valid on Fri Mar
Plunber of commandz in queus: O

4 0031733 PST 20050

Programatica Servers:

= "] say so”
= A person signs their name by an assertion

Testcases o
= Individual test cases / regression testing

QuickCheck 9
= Random testing
Plover 2
= The P-logic verifier
Alfa Ly
= Interactive proof editor based on type theory
Isabelle o)
= Logical framework tactic-based theorem prover

Model Checking of Monadic Code

-

—

implemented,
automated,
maturing

hand
translation

new
development

Early Case Study:

= Based on a Hypothetical Crypto Chip Design

Alg 1 |:> Upper Engine |:>
I
| Shared Memory | |Registers RegH | Alg
Algz I I RegF | Alg
Lower Engine calaf)
RegH
Alg; =

Algorithm

Conceptual View Implementation

= Modeled in Haskell (~260 LOC)

= GUARANTEED separation between channels

The Separation Property:

Alglg E Alg,
AIgZ] Algz
Alg;

Alg;

assert Separation
= All algs :: Algs.
All select :: (ChannelId — Bool).
{ filter (select . fst) . chip algs }

{ chip algs . filter (select . fst) }

= Concluded with formal proof using the Alfa server

Haskell

Haskell:

= An expressive, purely functional programming
language

= A semantically rich, formal modeling language

= A “(semi-) formal method”

Design Document:

|
|
|
|
|
|
|
I { 'I B " s — P,
| . Pt f.. o oot
. P = vadable g) ay (o
: (T see how this wopks, | N
standard Hasg, g o e
) askell onclering on oo 1 P
Bare Metal: A Programatica Mol 0 i ey 10 e oy) N
! .'lrI\I WREPerm gy o b o
| I-“-:’r(nu the ordeg A5 AN st
aror de sy th o
! OF dons satisfy the |y ”-r 1]
- A panial ore,
SWEOrt Pe TP aresal(e

Mark P Jomwes
eience & b

oy
noe & B A

: .

Ir_hn el g “larges -

¥ M0Permns wod fulipapp

Departient of Computer =
Ol Se

Oregon Health &

2000 NW Walker Road, Beavertcy
mpjdces.ogi .edul
. - noPerms y
February 2005 | T —
| fullPermns ::: rine{ reaq
Abmract | rma| e
et 0 bigh-bevel, al=ty SESOrt NoPermug,
F: O
e s wert Pyl .,"ﬂ’;_;‘”” W 1
p. T
It follows
Alows, by 4 g ,
are m\h-iu,: Smplo application of oy j“r‘,:'; »,
St i g . ‘ex
argest py By
ity
¥ T i
7. Tj"“‘f J'_.-,a e
UL p) o

Rt NoPermnsSinalles
. Truefp naferma)

i Programatics sf
consbining exersibabile Haskell

E—

b e

Vet ey

!«HK/:,,,M Wiy

] -

a single soaree documet.
WL Bl ermslame st

P True{ fullParme &

“fim]
1lormns of 5 [
e

oy,

ing

fand” ap agem
and Gpg respectively:

heap

Introduction

1

|
|
|
|
|

Permiss

lons ¢

| " b combingd by o,

eh-lowel o

This docuiiment prosents 3 bi
eluclis featurng = 1s vl mEmer

ariginal motivation o this work was o]l

m Separation Kemal"), which 16 2 ¢
welop s snch, the model [oonses ot 1] .
for e Unplementation o Ok anel Lterd] @ mu
upe., A key goal of thy]
(%]})
ombane Parmng op .

any specific archite
| PR
\jor vir

iy properies, el
s that g
Tl

e ol el

domains
O work op Osker is being co
1 with methodologies, 1oals, “I

e

which da
o0 and eertiflcation of liigh as=ur
Jines thiea sign
i langg

bt formal 0
Med P-loghe, b0 capt

wiing bosl

xecutable Model:

ern:lf:r: I
caiver :
er'n:inj;-r: I

Why Haskell?

= Purity: the result of a function depends only on the
argument value (i.e., no hidden dependencies)

= Polymorphic types: powerful and expresswe
parametricity provides "theorems for free"

= Formal semantics: a foundation for meaningful
assurance guarantees

= Powerful abstract datatypes: e.g., modular, scalable
encapsulation and reasoning about effects usmg monads

Scalability;

1yl

u-kernel vs. monolithic kernel

Haskell as a high-level language

4

“mostly types, ...”

Note: Diagram not to scale ... ©

Future Prospects:

= Performance is not a primary goal ... but it is

an issue:
= Paths through a p-kernel must be short and fast

= Runtime system assurance: e.qg., garbage collection

= On the table:

= Mechanisms for efficient construction and
manipulation of data structures at the bit-level

= Small size provides opportunities for aggressive
optimization and whole program analysis

= Default to strict instead of lazy evaluation

L4

What is L47

= |4 is a "second generation” u-kernel design

= Original Design: Jochen Liedtke

= QOriginal goal: To show that u-kernel based systems
are usable in practice with good performance

= Keep it simple:
= Original API had just 7 system calls dealing with key
abstractions:
= Address spaces: Memory protection

= Threads: Concurrency
= JPC: Inter Process Communication

Why Pick L4?

= |4 is industrially and technically relevant
= Multiple working implementations (Pistachio, Fiasco, etc...)
= Multiple supported architectures (ia32, arm, powerpc, mips, sparg, ...)

= Already used in a variety of domains, including real-time, security,
virtual machines & monitors, etc...

Why Pick L4?

= |4 is small enough to be tractable
= QOriginal implementation ~ 12K executable
= Recent/portable/flexible implementations ~ 10-20 KLOC C++

Why Pick L4?

= |4 is real enough to be interesting

= For example, we can run multiple, separated instances of Linux
(specifically: L4Linux, Wombat) on top of an L4 p-kernel

Why Pick L4?

= |4 is a good representative of the target domain and

a good tool for exposing core research challenges

= Threads, address spaces, IPC, preemption, interrupts, etc... are core
u-kernel concepts, regardless of API details

= [t should be possible to retarget to a different API or u-kernel design

House

An OS in Haskell!?

= OS implementations involve:
= low-level data structure manipulation, “bit twiddling”
= asynchronous interrupts, MMU, DMA, IO ports, ...

= Haskell may not be your “typical systems
programming language” ...

» But details like these are within reach ...

Page Table Maintenance:

type PAddr —— physical addresses
type VAddr -— virtual addresses
type PageMap —-— page map references
data PageInfo = PageInfo { pAddr :: PAddr,
writeable :: Bool,
dirty :: Bool,
accessed :: Bool }
setPage :: PageMap — VAddr — Maybe PageInfo — H Bool
getPage :: PageMap — VAddr — H (Maybe PageInfo)
assert {do setPage pm va pi; getPage pm va}

{do setPage pm va pi; return pi}

House:

Run a.out executables

Page fault and syscall handlers

House Haskell window system and applications
Cooperating concurrent processes

Haskell | Device drivers (keyboard/mouse/text video/

graphics video/network)

Concurrent threads

GHC RTS Asynchronous exceptions
Garbage collection

C

Address space management
hOp C Hardware interrupts/faults
Initial memory configuration

X86

|:
ta
e

re M

Ba

N

O

| taleulator |

B
D@@
5§D
o

Relating Osker & House:

Osker |
Model Different Shapes

&
Different Interfaces

Interface

Signature + Properties

Modular Construction:

Osker
Model

HW X86

Modular Construction:

Osker
Model Common
{71 Userspace” [)
Interface
LU T~
HW X86
execContext :: PageMap — Context — H (Interrupt, Context)

assert All m, pm, pa, C.
m ::: NotMapped pm pa

==> m ::: Commutes {readPhys pa} {execContext pm c}

Modular Certification:

UFS
Osker
Model

HF U

4 U e
HW =

Properties of HW model
Properties of Userspace interface
Osker separation properties
Properties of x86 hardware

H
U
S
X

|_X W
X86

= Compositional certification
= Consistency checking on U

= Design input on X

Combining Osker & House:

Osker
Model

—)

HW

Osker
Model

~_/ _

X86

(=

A First Implementation
of Osker on Bare Metal

X86

Standard C code, ...

#define
#define
#define
#define

wait 1
sync 2
src 3
dest 4

#defines

extern void lock (), sender (), receiver();

void start () {
fork (sync, lock);
fork(src, sender);
fork (dest, receiver) ;
stop () ; [~

} Osker

void lock () { systern Ca”S
for (;;) |

recv (0, wait);
send (getSender (), wait);

}

}

#define LOCK (x) send(sync, wait); \

x; \

void sender () {
LOCK (printf ("I am the sender\n")):;
int i;
for (i = 0; 1i<10; 1i++) {
setMsg (i) ;

send (dest, wait);

LOCK (printf ("I just sent %d\n",
}
stop () ;

1))

}

vold receiver ()
int total = 0
LOCK (printf ("
for (;;) |
int x;
int s;
recv(src, wait);
getMsg () ;
s = getSender();

total += x; pr“1tf()

LOCK (printf (“Received %d from %d,
total is %d\n", x, s, total));

{
I am the receiver\n"));

X =

malloc(), protected execution
(divide by zero, segment violation,
time slice exhausted, etc...), ...

}
stop ()

Standard tools, ...

#define wait 1
#define sync 2
#define src 3
#define dest 4

extern void lock(), sender(), receiver();

void start() {
fork (sync, lock);
fork (src, sender);
fork (dest,receiver) ;
stop() ;

}

void lock() {
for (;;) {
recv (0, wait);
send (getSender (), wait);
}
}

#define LOCK(x) send(sync, wait); \
%\
recv(sync, wait)

void sender() {
LOCK (printf ("I am the sender\n"));

int i;
for (i = 0; i<10; i++) {
setMsg (i) ;

send (dest, wait);
LOCK (printf ("I just sent %d\n",
i)
}
stop() ;
}

void receiver() {
int total = 0;
LOCK (printf ("I am the receiver\n"));
for (;;) {
int x;
int s;
recv(src, wait);
x = getMsg();
s = getSender();
total += x;
LOCK (printf (“Received %d from %d,
total is %d\n", x, s, total));
}
stop() ;

gcc

a.out
executable

Compile, boot, and run

#define wait 1
#define sync 2

void sender() {
LOCK (printf ("I am the sender\n"));

#define src 3 int i;
#define dest 4 for (i = 0; i<10; i++) {
setMsg (i) ;

extern void lock(), sender(), receiver(); send (dest, wait);

LOCK (printf ("I just sent %d\n",

void start() { i));
fork (sync, lock); }
fork (src, sender); stop() ;
fork (dest, receiver) ; }
stop() ;
} void receiver() {

int total = 0;
void lock() {

for (;;) { for (;;) {
recv (0, wait); %nt x;
send (getSender (), wait); int s;
} recv(src, wait);
} x = getMsg();
= getSender() ;
#define LOCK(x) send(sync, wait); \ total += x;
PYIRY LOCK (printf (“Received %d from %d,

recv (sync, wait) total is %d\n", x, s, total));

}
stop() ;

CC
J a.out

LOCK (printf ("I am the receiver\n"));

executable

grub

JJJJ

JJJJ

One Source, Many Uses:

Design Document:

|
|
|
|
|
|
|
I { 'I B " s — P,
| . Pt f.. o oot
. P = vadable g) ay (o
: (T see how this wopks, | N
standard Hasg, g o e
) askell onclering on oo 1 P
Bare Metal: A Programatica Mol 0 i ey 10 e oy) N
! .'lrI\I WREPerm gy o b o
| I-“-:’r(nu the ordeg A5 AN st
aror de sy th o
! OF dons satisfy the |y ”-r 1]
- A panial ore,
SWEOrt Pe TP aresal(e

Mark P Jomwes
eience & b

oy
noe & B A

: .

Ir_hn el g “larges -

¥ M0Permns wod fulipapp

Departient of Computer =
Ol Se

Oregon Health &

2000 NW Walker Road, Beavertcy
mpjdces.ogi .edul
. - noPerms y
February 2005 | T —
| fullPermns ::: rine{ reaq
Abmract | rma| e
et 0 bigh-bevel, al=ty SESOrt NoPermug,
F: O
e s wert Pyl .,"ﬂ’;_;‘”” W 1
p. T
It follows
Alows, by 4 g ,
are m\h-iu,: Smplo application of oy j“r‘,:'; »,
St i g . ‘ex
argest py By
ity
¥ T i
7. Tj"“‘f J'_.-,a e
UL p) o

Rt NoPermnsSinalles
. Truefp naferma)

i Programatics sf
consbining exersibabile Haskell

E—

b e

Vet ey

!«HK/:,,,M Wiy

] -

a single soaree documet.
WL Bl ermslame st

P True{ fullParme &

“fim]
1lormns of 5 [
e

oy,

ing

fand” ap agem
and Gpg respectively:

heap

Introduction

1

|
|
|
|
|

Permiss

lons ¢

| " b combingd by o,

eh-lowel o

This docuiiment prosents 3 bi
eluclis featurng = 1s vl mEmer

ariginal motivation o this work was o]l

m Separation Kemal"), which 16 2 ¢
welop s snch, the model [oonses ot 1] .
for e Unplementation o Ok anel Lterd] @ mu
upe., A key goal of thy]
(%]})
ombane Parmng op .

any specific archite
| PR
\jor vir

iy properies, el
s that g
Tl

e ol el

domains
O work op Osker is being co
1 with methodologies, 1oals, “I

e

which da
o0 and eertiflcation of liigh as=ur
Jines thiea sign
i langg

bt formal 0
Med P-loghe, b0 capt

wiing bosl

xecutable Model:

ern:lf:r: I
caiver :
er'n:inj;-r: I

Certification Target:

Programatica Haskell BErowser: Perms O] x|
| File = | view [E | Windows 5] Cert [|
Module Graph|_[:] [File: |PEI"‘ITIS+].|"IS |

Files El El Module: |P8r‘m3 | |Impurts EI| |Impurted By EI|

[ra —

| LAE
I assert CombinePermsAzsoc

nterface.lhs I = @All op, Associative op == Hzsociative {combinePerms opl
MonadT.lhs

OkMonad.lhs

| azzert En:nml:ninePer‘msEammutatiueéﬂ
PhysMem.lhs I = All op, Commutative op == Commutative {combinePerms opl

| assert IntersectPermsfiszoc = Associative (FEN) v

I aszert UnionPermsfssoc = fssociative (N4 v

| aszert InterzectPermsCommutative = Commutative (A&h) v

=
|
I

I assert UnionPermsCommutative = Commutative (814 v

The “haf(&%)} operation can be used to ensure that permissions
are not increazed when an object iz paszed from one thread
to another, If a sending thread haz permizsions “heipt on a

=
— = — —
o =EE ta
EEEE@:EEg EI i i
= EE
zl |2

=]
=
=]
=
2

Fermns/AlConbinePermsCommutatives:
Lertificate marked valid on Fri Har 4 00:17:33 PST 2008
Plunber of commandz in queus: O

}EE@iE
2= |2
(1]

Practical Implementation:

| Caleulator |

]
7llafs]l]
«Jlsfe]l |
HEEHB
clof=]]

One Source, Many Uses:

Our Design Document
is also

Our Executable Model
and also

Our Certification Target
and also

Our Running Implementation

Why “"House™?

= the "Haskell Users Operating
System Environment”

Why “"House™?

= YOU are more secure in a House ...

—

.........

[T

nm...q.!' l]1r

= ... than if you only have Windows ...

Next Steps

Next Steps:

OS Model: Continuing transition to a more

accurate/more complete (and more complex) L4 API

Harg
and

Esta

blish formal separation property

ware Model: Extensions to describe interrupts
nardware concurrency mechanisms

Continued evolution of bare metal implementation

-

Test Apps

Osker Model

Runtime

OS

Hardware

=

Test Apps

Osker Model

hOP/HBM

Hardware...

Real Apps

Osker

u-HBM

Hardware

Increasing RTS Assurance:

= House illustrates that we can run Haskell programs on
a very thin OS layer, obeying a small set of properties

= The runtime system (RTS) is large, complex, and
written in C, which makes it hard to build confidence in
the overall system

= We need high-confidence versions of two main
services:

= Pre-emptive concurrency (needed for interrupt handling)

= Garbage collection (possibly real-time)

Possible approaches to high-
confidence concurrency:

= Model RTS in Haskell
= Prove key properties about the model;
= Transfer results back to C code.
= (The Galois “"Haskell on Bare Metal” project is pursuing this.)

= Remove pre-emptive concurrency from the RTS:
= |Leverage Osker concurrency, handle interrupts explicitly

= Use a language subset for which we can accurately bound
execution times

Possible approaches to high-
confidence garbage collection:

= Develop ad-hoc proof of correctness for
conventional GC using recently developed
separation logics.

= Rewrite the Osker model in a language variant
with a region-based type system

= Should require only simple RTS = relatively easy to
validate

