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Embedded Security: Where Are We At?
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Embedded Programming 1970s - 2014

Typical tools:
● Programming: C/C++
● Building: GNU 

Make/GCC
● Debugging: GDB
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From Embedded Systems
to Cyber Physical Systems

src: Kathleen Fisher, http://www.cyber.umd.edu/sites/default/files/documents/symposium/fisher-HACMS-MD.pdf
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Hacking Cars

New York Times
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Example Attacks

Comprehensive Experimental Analyses of Automotive Attack Surfaces, Stephen 
Checkoway et al.



© 2014 Galois, Inc. All rights reserved.

Who Needs Attackers?

LA Times

Code issues:
● Buffer overflows
● Unsafe casts
● Race conditions
● Recursion (makes stack analysis difficult)
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Aren't These Solved Problems?

● Virtualization & sandboxes
● E.g., Xen, Chrome Native C lient

● High-level languages, powerful type systems
● E.g., Ocaml Haskell

● Sound verification tools
● E.g., Frama-C, CBMC
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Nope.
● Small, cheap hardware

● <1MB flash, <1MB RAM, <32-bit architecture, 10s of MHz speed

● No virtual memory

● Must control memory usage, timing
● “Hello World” in Haskell on x86_64 requires ~1MB RAM usage, ~1MB exec

● Can't even fit an OS sometimes

● Unpredictable scheduling/garbage collection

● Static analysis helps, but no pancea
● Model of libc, peripherals

● Scaling, false-positives

● No high-level properties,

architectural reasoning
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Heterogenous Embedded Systems:
What are the properties?
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Consider an autopilot: Not just different properties,
different kinds of properties
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The “Air Team”

● Boeing: industrial-scale vehicles

● Galois, Inc.: research vehicle, 
languages

● NICTA: networking/operating 
systems

● Rockwell Collins/Univ. Minn.: 
integration and architecture

● DRAPER/AIS/U. Oxford (Red 
Team): vulnerability analysis
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Multiple airframes

New hardware

eChronos FreeRTOS Multiple OSes

.c .h
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1.5 yrs, ~3 engineers
Need a massively more secure and productive approach
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The Results to Date
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Designing a Language for
Safety and Security

● While being flexible:
● bit-data manipulation

● memory-area   manipulation

● “escaping” to/interrop with C

● safe user-defined abstractions

● small and extensible

● existing infrastructure

● Help ensure
● memory safety
● timing safety (i.e., easier WCET 

analysis)
● functional correctness
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Memory-Safe Programming

Rust (Mozilla)

● Memory safety

● Concurrency

● C look and feel

Cyclone (AT&T, Cornell)

● Memory safety

● Garbage collection

● C look and feel
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Embedded Domain-Specific Language

Language is “just” a powerful Haskell library

EDSL language: ~6KLOCs

● Building a new specification language is 
hard!

● Reduce the effort:
● Syntax & Parser
● Type Checker
● Macro language is type-safe and Turing-

complete

EDSL libs

Haskell
(Host Language)
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Ivory Example

Loop over an array adding x to each element:

void mapProc(G*uint8_t[4] arr, uint8_t x) {
  map ix {
    let v = arr ! ix;
    *v = *v + x;
  }
}

mapProc = proc "mapProc"
  $ \arr x -> body
  $ arrayMap
  $ \ix -> do
      let arrIx = arr ! ix
      v <- deref arrIx
      store arrIx (v + x)

Concrete
Syntax

Haskell
Syntax
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Macros, Example 2

data Cond eff = Cond IBool (Ivory eff ())

(==>) = Cond

cond [] = return ()

cond (Cond b f : cs) = ifte_ b f (cond cs)

 ifte (x >? 100)

  (store result 10)

  (ifte (x >? 50)

    (store result 5)

    (ifte (x >? 0)

      (store result 1)

      (store result 0)))

cond
  [ x >? 100 ==> store result 10
  , x >? 50  ==> store result 5
  , x >? 0   ==> store result 1
  , true     ==> store result 0
  ]

Type safe & for free
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From Procedures to Architectures

● Goal: address the “glue code” problem: task initialization and 
communication

● “Just” Ivory macros so has all the type-safety guarantees of 
Ivory—and no new code generator!

● Also generate architectural descriptions
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Ivory: What We Removed

● Heap allocation
● The stack: world's simplest collector

● Loops with user-defined termination conditions 

● void type

● Implementation-defined size-types

● Side-effecting expressions

● Pointer arithmetic
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Ivory: What We Added

● Effect types
● A llocation effects:    This function can't (stack) allocate memory

● Escape effects:    No break is allowed in this loop

● Return effects:    This program fragment contains no return statement

● References (guaranteed non-null pointers)

● Array map/fold combinators

● Safe strings operators

● Safe Bit-data manipulation
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SMACCMPilot
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SMACCMPilot Architecture
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● 15K Ivory
● 10K generated Ivory
● Generates ~45K C
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sm a c cm p i lo t .o rg
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Lessons Learned

● Remove classes of bugs
● Bugs remain, but they're the interesting ones

● Strong, static types
● Type-checking for debug efficiency

● Small, extensible compiler
● Instead of a growing test-suite, a growing set of checks in the compiler
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Questions
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