
Programming Languages for
High-Assurance Autonomous

Vehicles
Lee Pike (speaker), Pat Hickey, James Bielman, Trevor Elliott, John

Launchbury, Erlend Hamberg, Thomas DuBuisson

HCSS | May 2014

© 2014 Galois, Inc. All rights reserved.

Embedded Security: Where Are We At?

© 2014 Galois, Inc. All rights reserved.

Embedded Programming 1970s - 2014

Typical tools:
● Programming: C/C++
● Building: GNU

Make/GCC
● Debugging: GDB

© 2014 Galois, Inc. All rights reserved.

From Embedded Systems
to Cyber Physical Systems

src: Kathleen Fisher, http://www.cyber.umd.edu/sites/default/files/documents/symposium/fisher-HACMS-MD.pdf

© 2014 Galois, Inc. All rights reserved.

Hacking Cars

New York Times

© 2014 Galois, Inc. All rights reserved.

Example Attacks

Comprehensive Experimental Analyses of Automotive Attack Surfaces, Stephen
Checkoway et al.

© 2014 Galois, Inc. All rights reserved.

Who Needs Attackers?

LA Times

Code issues:
● Buffer overflows
● Unsafe casts
● Race conditions
● Recursion (makes stack analysis difficult)

© 2014 Galois, Inc. All rights reserved.

Aren't These Solved Problems?

● Virtualization & sandboxes
● E.g., Xen, Chrome Native C lient

● High-level languages, powerful type systems
● E.g., Ocaml Haskell

● Sound verification tools
● E.g., Frama-C, CBMC

© 2014 Galois, Inc. All rights reserved.

Nope.
● Small, cheap hardware

● <1MB flash, <1MB RAM, <32-bit architecture, 10s of MHz speed

● No virtual memory

● Must control memory usage, timing
● “Hello World” in Haskell on x86_64 requires ~1MB RAM usage, ~1MB exec

● Can't even fit an OS sometimes

● Unpredictable scheduling/garbage collection

● Static analysis helps, but no pancea
● Model of libc, peripherals

● Scaling, false-positives

● No high-level properties,

architectural reasoning

© 2014 Galois, Inc. All rights reserved.

Heterogenous Embedded Systems:
What are the properties?

RC Receiver

Modem

Gyro + Accel

Compass

Barometer

GPS

UART
Driver

Timer
Driver

Input
Decoder

I2C, SPI
Drivers

UART
Driver

Sensor
Fusion

Packet
Decode

Stabilization

GCS
Comms

Auto
Flight Modes

Motors

Packet
Encode

Motor
Mixing

UART
Driver

Modem

UART
Driver

Decrypt/
Auth.

Encrypt/
Sign

Sensor fusion

Device
drivers

Mode
Management &
Fault recovery

Control systems

Crypto

Networking

Consider an autopilot: Not just different properties,
different kinds of properties

© 2014 Galois, Inc. All rights reserved.

The “Air Team”

● Boeing: industrial-scale vehicles

● Galois, Inc.: research vehicle,
languages

● NICTA: networking/operating
systems

● Rockwell Collins/Univ. Minn.:
integration and architecture

● DRAPER/AIS/U. Oxford (Red
Team): vulnerability analysis

© 2014 Galois, Inc. All rights reserved.

Multiple airframes

New hardware

eChronos FreeRTOS Multiple OSes

.c .h
~40klocs autopilot,
comms, devices

security
properties

AADL
architecture

models
Design, synthesize
autopilot

Ground control
station

1.5 yrs, ~3 engineers
Need a massively more secure and productive approach

SynthesizeGenerate

Embedded
encrypted
datalink

Design Synthesize

The Results to Date

© 2014 Galois, Inc. All rights reserved.

Designing a Language for
Safety and Security

● While being flexible:
● bit-data manipulation

● memory-area manipulation

● “escaping” to/interrop with C

● safe user-defined abstractions

● small and extensible

● existing infrastructure

● Help ensure
● memory safety
● timing safety (i.e., easier WCET

analysis)
● functional correctness

© 2014 Galois, Inc. All rights reserved.

Memory-Safe Programming

Rust (Mozilla)

● Memory safety

● Concurrency

● C look and feel

Cyclone (AT&T, Cornell)

● Memory safety

● Garbage collection

● C look and feel

© 2014 Galois, Inc. All rights reserved.

Designing a Language for
Safety and Security

● While being flexible:
● bit-data manipulation

● memory-area manipulation

● “escaping” to/interrop with C

● safe user-defined abstractions

● small and extensible

● existing infrastructure

● Help ensure
● memory safety
● timing safety (i.e., easier WCET

analysis)
● functional correctness

© 2014 Galois, Inc. All rights reserved.

Embedded Domain-Specific Language

Language is “just” a powerful Haskell library

EDSL language: ~6KLOCs

● Building a new specification language is
hard!

● Reduce the effort:
● Syntax & Parser
● Type Checker
● Macro language is type-safe and Turing-

complete

EDSL libs

Haskell
(Host Language)

© 2014 Galois, Inc. All rights reserved.

Ivory Example

Loop over an array adding x to each element:

void mapProc(G*uint8_t[4] arr, uint8_t x) {
 map ix {
 let v = arr ! ix;
 *v = *v + x;
 }
}

mapProc = proc "mapProc"
 $ \arr x -> body
 $ arrayMap
 $ \ix -> do
 let arrIx = arr ! ix
 v <- deref arrIx
 store arrIx (v + x)

Concrete
Syntax

Haskell
Syntax

© 2014 Galois, Inc. All rights reserved.

Macros, Example 2

data Cond eff = Cond IBool (Ivory eff ())

(==>) = Cond

cond [] = return ()

cond (Cond b f : cs) = ifte_ b f (cond cs)

 ifte (x >? 100)

 (store result 10)

 (ifte (x >? 50)

 (store result 5)

 (ifte (x >? 0)

 (store result 1)

 (store result 0)))

cond
 [x >? 100 ==> store result 10
 , x >? 50 ==> store result 5
 , x >? 0 ==> store result 1
 , true ==> store result 0
]

Type safe & for free

© 2014 Galois, Inc. All rights reserved.

From Procedures to Architectures

● Goal: address the “glue code” problem: task initialization and
communication

● “Just” Ivory macros so has all the type-safety guarantees of
Ivory—and no new code generator!

● Also generate architectural descriptions

© 2014 Galois, Inc. All rights reserved.

Ivory: What We Removed

● Heap allocation
● The stack: world's simplest collector

● Loops with user-defined termination conditions

● void type

● Implementation-defined size-types

● Side-effecting expressions

● Pointer arithmetic

© 2014 Galois, Inc. All rights reserved.

Ivory: What We Added

● Effect types
● A llocation effects: This function can't (stack) allocate memory

● Escape effects: No break is allowed in this loop

● Return effects: This program fragment contains no return statement

● References (guaranteed non-null pointers)

● Array map/fold combinators

● Safe strings operators

● Safe Bit-data manipulation

© 2014 Galois, Inc. All rights reserved.

SMACCMPilot

© 2014 Galois, Inc. All rights reserved.

SMACCMPilot Architecture
RC Receiver

Modem

Gyro + Accel

Compass

Barometer

GPS

UART
Driver

Timer
Driver

Input
Decoder

I2C, SPI
Drivers

UART
Driver

Sensor
Fusion

Packet
Decode

Stabilization

GCS
Comms

Auto
Flight Modes

Motors

Packet
Encode

Motor
Mixing

UART
Driver

Modem

UART
Driver

Decrypt/
Auth.

Encrypt/
Sign

● 15K Ivory
● 10K generated Ivory
● Generates ~45K C

© 2014 Galois, Inc. All rights reserved.

sm a c cm p i lo t .o rg

© 2014 Galois, Inc. All rights reserved.

Lessons Learned

● Remove classes of bugs
● Bugs remain, but they're the interesting ones

● Strong, static types
● Type-checking for debug efficiency

● Small, extensible compiler
● Instead of a growing test-suite, a growing set of checks in the compiler

© 2014 Galois, Inc. All rights reserved.

Questions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 12
	GALOIS SYNTHESIS
	Slide 23
	Slide 24
	Slide 25
	Slide 28
	Slide 32
	Slide 35
	Slide 36
	Slide 41
	Slide 42
	Slide 50
	Slide 52
	Slide 54
	Slide 55
	Slide 56

