
Programming with Proofs
for High-assurance Software
NIKHIL SWAMY

Senior Principal Researcher
Microsoft Research, Redmond

Computational Cybersecurity in
Compromised Environments (C3E)
September 11, 2020

https://cps-vo.org/group/c3e

Financial
technology

High assurance so.ware?

Secure communicationsCloud infrastructure

Formal proofs to the rescue

Financial
technology

Veritas
Wysteria

Verifiable multi-party
computations

E-vo>ng

Project Everest
Building and Deploying
Verified Secure
Communication Components

Programming with proofs, at scale
Using F*, a new
verification oriented
programming language
developed at MSR

600,000 lines of code and
proof under continuous
integration

100s of builds a week
with checking proofs of
functional correctness on
an evolving systems

Kit OS

INRIA CompCert

Sel4 OS

MSR IronClad

MSR Everest

0

100000

200000

300000

400000

500000

600000

700000

1985 1990 1995 2000 2005 2010 2015 2020 2025

Ve
rif

ie
d

Li
ne

s o
f C

od
e

Year

Program proofs in F* for billions
of unsuspecting users

Secure communicationsCloud infrastructure

Automated parsing
untrusted data with proofs

in Hyper-V/VMSwitch

Verified
cryptography in the

Linux kernel

Quic transport,
MSQuic in Windows,

Verified crypto in Firefox,
mbedTLS,

Signal in Wasm,
Wireguard, …

Verified crypto for
ElectionGuard e-

Voting SDK
Verified Merkle trees

for Enterprise
blockchains

Financial
technology
Financial
technology

Veritas
Wysteria

Verifiable multi-party
computations

E-voting

Undisclosed 3rd parties
rewriting core trading

specifications and
algorithms in F*

Proven correct
high performance

verifiable key-
value stores

Safety
Memory- and type-safety. Mitigates buffer overruns, dangling pointers, code injections.

Functional correctness
Our fast implementations behave precisely as our simpler specifications.

Secrecy
Access to secrets, including crypto keys and private app data is restricted according to design.

Cryptographic security
We bound the probability that an attacker may break any secrecy or integrity properties

What do we prove?

Incremental deployment
of verified software

Whole stack replacement with formally proven software is a great goal
But, we need to incrementally evolve the current stack to get there

Carefully identify components that underpin the security and correctness of
high-value systems

Cryptographic components: primitives, constructions, and standardized protocols
Components that mediate access across trust boundaries, e.g., system call boundaries, virtualization
interfaces, …

Program and prove drop-in replacements for those components
Bring decades of research in formal proofs to the real world, improving tools, methodologies
Harden existing systems with measurable benefits to overall system security

KReMLin:
compiler from
(a subset of)
F* to C

F*: A first example

let multiply_by_9 (a:uint32) : Pure uint32
(requires 9 * a <= MAX_UINT_32)
(ensures λ result -> result == 9 * a)
=
let b = a << 3ul in
a + b

F* implementation
and specification

Efficient C implementation
Verification imposes no
runtime performance
overhead

uint32_t multiply_by_9(uint32_t a)
{

uint32_t b = a << (uint32_t)3;
return a + b;

}

F*: A logical framework
for effectful programs and proofs

Verified
assembly code

Verified C
programs

Verified parser
generator

Concurrent and distributed
programming with
separation logic

2007 08 09 10 11 12 13 14 15 16 17 18 19 20

Fable F7 Fine FX F5 F* monadic-F* relational-F* multi-monadic-F* universal-F* meta-F* layered-F*

Multi-tier
programs

Type-based
Protocol
analysis

Access
control JavaScript

TLS-1.3
record
layer

HACL*-v1
crypto

EverParse

Vale
asm
crypto

MPC

EverCrypt

Signal

Steel

Quic record
layer

HACL-v2 xNCompiler
certification

TypeScriptSecure
compilation

Founda>ons

Applications

MSR Redmond
◦ Chris Hawblitzel
◦ Jonathan Protzenko
◦ Tahina Ramananandro
◦ Nikhil Swamy

MSR India
◦ Aseem Rastogi

MSR Cambridge
◦ Antoine Delignat-Lavaud
◦ Cédric Fournet
◦ Christoph M. Wintersteiger
◦ Santiago Zanella-Béguelin

Rosario (Argentina)
◦ Guido Martinez

INRIA Paris
• Danel Ahman
• Kenji Maillard
• Benjamin Beurdouche
• Karthikeyan Bhargavan
• Victor Dumitrescu
• Cătălin Hriţcu
• Marina Polubelova
• Denis Merigoux
• Son Ho
• Natalia Kulatova

CMU (Pittsburgh)
• Jay Bosamiya
• Aymeric Fromherz
• Bryan Parno

Edinburgh
• Markulf Kohlweiss

Other contributors
• Barry Bond
• Kevin Kane
• Qunyan Magnus
• Gustavo Varo
• Zoe Paraskevopoulou
• Yao Li
• Joonwon Choi
• Clément Pit-Claudel
• Nick Giannarakis
• Niklas Grimm
• Anita Gollamudi
• Nadim Kobeissi
• Matteo Maffei
• Asher Manning
• Monal Narasimhamurthy
• Gordon Plotkin
• Perry Wang
• Jean-Karim Zinzindohoue
• Haobin Ni
• Mateusz Bujalski
• Konrad Kohbrok

Application

Secure
communication

components

Message
formatter

Wire
formaQer

Sign &
encrypt

Verify &
decrypt

Wire format
parser

Message
parser

State machines
& concurrency

State machines
& concurrency

Steel

A Mathematically Proven, Efficient, Low-level Parser Generator

Improper parsing of
attacker-controlled input

“The leakage was the result of a bug in an HTML parser chain
Cloudflare uses to modify webpages as they pass through the
service's edge servers. […]. When the parser was used in combination
with three Cloudflare features […] it caused Cloudflare edge servers to
leak pseudo random memory contents into certain HTTP responses.”

Microsoft Hyper-V: Traversing trust
boundaries deep in the software stack

Hyper-V is the core technology
isolating virtual machines in the
Azure cloud

Virtualized devices exposed to
enlightened guests

Attack Surface: Untrusted guest
VM can send malformed packets
to host kernel, E.g. trying to
overflow the packet buffer

Data validaEon is challenging
at the guest/host boundary
• Handwritten code to validate messages from untrusted guests

• Tricky to write for several reasons
• Many variable-length structures and data-dependent unions
• Avoiding arithmetic overflow
• Layered protocols, with multiple headers to be parsed incrementally
• Sometime dealing with shared memory … hard to be sure

• Double fetches can lead to time-of-check/time-of-use bugs

• Legacy C code, hard to deploy even basic modern bounds-checking
measures, e.g., C++ spans, Rust etc.,
• Plus bounds checking comes with runtime overhead

A Mathematically Proven Low-level Parser Generator
Our long-term goal
• Abolish writing low-level binary format parsers by hand
• Instead, specify formats in a high-level declarative notation
• Auto-generate performant, verified low-level code to parse binary messages
• Integrate seamlessly with existing codebases in a variety of languages (C, C++, Rust, …)

With formal proofs that the code is:
• Memory safe (no access out of bounds, no use after free etc.)
• Arithmetically safe (no overflow/underflow)
• Functionally correct (that it parses exactly those messages that conform to the high-level spec)
• Free from double-fetches, so safe against time-of-check/time-of-use bugs

https://project-everest.github.io/everparse/

https://project-everest.github.io/everparse/

A Mathematically Proven Low-level Parser Generator
Our long-term goal
• Abolish writing low-level binary format parsers by hand
• Instead, specify formats in a high-level declarative notation
• Auto-generate performant, verified low-level code to parse binary messages
• Integrate seamlessly with existing codebases in a variety of languages (C, C++, Rust, …)

With formal proofs that the code is:
• Memory safe (no access out of bounds, no use after free etc.)
• Arithmetically safe (no overflow/underflow)
• Functionally correct (that it parses exactly those messages that conform to the high-level spec)
• Free from double-fetches, so safe against time-of-check/time-of-use bugs

https://project-everest.github.io/everparse/

Provably correct by
construcJon:

Zero user proof effort

https://project-everest.github.io/everparse/

Hello.3d:

typedef struct _Sample(mutable PUINT32 out) {
UINT32 MajorVersion { MajorVersion = 1 };
UINT32 MinorVersion { MinorVersion = 0 };
UINT32 Min;
UINT32 Max { Min <= Max }

{:on-success *out = Max}
} SAMPLE, *PSAMPLE;

typedef enum {
Parse_namedGroup_P_256, Parse_namedGroup_Unknown_namedGroup

} Parse_namedGroup_namedGroup__tags;
Fd
Ssd
Fsd
Fsd
Fsd
Fsd
Fsd
Fsd
Fsdf
Sdf
Sdf
Sdf
"unreachable (pattern matches are exhaustive in F*)");

KRML_HOST_EXIT(255U);
}

}

typedef enum {
Parse_namedGroup_P_256, Parse_namedGroup_Unknown_namedGroup

} Parse_namedGroup_namedGroup__tags;

FStar_Pervasives_Native_option__Parse_namedGroup_namedGroup_
Parse_namedGroup_parse_namedGroup(FStar_Bytes_bytes x)
{
bool scrut0 = FStar_Bytes_len(x) < (uint32_t)1U;
FStar_Pervasives_Native_option__K___uint8_t_uint32_t scrut1;
if (scrut0 == true)
scrut1 =

FStar_Pervasives_Native_option__Parse_namedGroup_namedGroup_
Parse_namedGroup_parse_namedGroup(FStar_Bytes_bytes x)
{

Starting from a high-level language
of message formats

EverParse auto-generates F* parsing code that is

Dependent Data Descriptions in 3D:
A source language of message formats
Constraints and actions augmenting C data types

typedef struct _Sample(mutable PUINT32 out) {
UINT32 MajorVersion { MajorVersion = 1 };
UINT32 MinorVersion { MinorVersion = 0 };
UINT32 Min;
UINT32 Max { Min <= Max }

{:on-success *out = Max}
} SAMPLE, *PSAMPLE;

Dependent Data Descrip?ons in 3D:
A source language of message formats
Constraints and ac2ons augmen2ng C data types

typedef union _MessageUnion {
Init init;
Query query;
Halt halt;

} MessageUnion;

typedef struct _Message {
UINT32 tag;
MessageUnion message;

} Message;

Dependent Data Descriptions in 3D:
A source language of message formats
Constraints and actions augmenting C data types

casetype _MessageUnion(UINT32 tag) {
switch(tag) {
case INIT_MSG:

Init init;
case QUERY_MSG:

Query query;
case HALT_MSG:

Halt halt;
}

} MessageUnion;

typedef struct _Message {
UINT32 tag;
MessageUnion(tag) message;

} Message;

/*++
|------------DataOffset---------------------|----DataLength-----|

|--------------PacketLength---|

|------------HeaderLength----------------------|

|---sizeof(this)--|

|-----Offset2------|----DataLength2-----|
--*/
entrypoint
typedef struct __SOME_PACKET (UINT32 PacketLength,

UINT32 HeaderLength,
mutable UINT32 *dataOffset,
mutable UINT32 *dataLength,
mutable UINT32 *offset2,
mutable UINT32 *length2)

where (sizeof(this) <= HeaderLength &&
HeaderLength <= PacketLength)

{
UINT32 DataOffset

{ sizeof(this) <= DataOffset }
{:on-success

*dataOffset = DataOffset;
return true;

};
UINT32 DataLength

{ is_range_okay(PacketLength, DataOffset, DataLength) }
{:on-success

*dataLength = DataLength;
return true;

};
UINT32 FieldA

{ FieldA <= Bound_A };
UINT32 FieldB

{ FieldB <= Bound_B };

UINT32 NumExtraElements
{ NumExtraElements <= MAX_EXTRA_ELEMENTS };

UINT32 Offset2
{:on-success

*offset2 = Offset2;
return true;

};
UINT32 DataLength2

{
if ((Offset2 != 0) ||

(DataLength2 != 0))
{

is_range_okay (HeaderLength, Offset, DataLength2) &&
Offset2 >= sizeof(this) &&
Offset2 + DataLength2 <= DataOffsset

}
}
{:on-success

*dataLength2 = DataLength2;
return true;

};
UINT32 Reserved;

} SOME_PACKET;

A Sample 3D Specifica?on for several
variable-length structures

• Constraints
• Actions with mutable outparameters
• Variable-length data at designated offsets
• Tagged unions
• …

Generated C code, after verification

• C code aims to be human-readable, human
patchable
• Propagates comments from source spec
• Generates predictable descriptive names

BOOLEAN
CheckPacket(

uint32_t ___PacketLength,
uint32_t ___HeaderLength,
uint32_t *dataOffset,
uint32_t *dataLength,
uint32_t *offset2,
uint32_t *dataLength2,
uint8_t *base,
uint32_t len);

Some case studies
Spec

EverParse Takeaways: A Sweet Spot

◦ Good return on investment
◦ Parsing bugs => security vulnerabilities exploitable from the attack surface
◦ Focus defense efforts on parsing code

◦ EverParse: Push-button proofs and code-generation for low-level parsers
◦ Strong mathematical guarantees of safety and correctness
◦ Provably correct by construction: Zero user proof effort

◦ It works in Windows and Microsoft Azure today, securing the parsing of every
packet that passes through the networking stack

Industrial-grade verified cryptography at scale

Poly1305: Uses the prime field with 𝑝 = 2!"# − 5

44 bits in each word

Curve25519: Uses the prime field with 𝑝 = 2$%% − 19

OpenSSL has 12 unverified bignum libraries optimized for each case

Many bugs in Curve25519 implementations
(C and assembly)

Curve25519-donna TweetNaCl

NaCl (asm)

Classified as Microsoft Confidential

3 Bugs in OpenSSL implementation
of Poly1305

29

Low*

EverCrypt
A verified, no-excuses, industrial-grade cryptographic provider.

A replacement for: OpenSSL, BCrypt, libsodium.
- A collection of algorithms (exhaustive)
- Easy-to-use API (CPU auto-detection)
- Several implementations (multiplexing)
- APIs grouped by family (agility)

Clients get state-of-the art performance.
- 140,000 lines of Low* and Vale
- 43,000 lines of C + 15,000 lines of ASM

Finally: speed and safety

Ironclad Apps SHA256
Andrew Appel SHA256

HACL* ChachaPoly
Vale AES-CBC+Poly1305

Vale AES-GCM-128
Jasmin ChaCha20 + Poly1305

Vale AES-GCM-128

0

1

2

3

4

5

6

7

2013 2014 2015 2016 2017 2018 2019 2020

GB
/s

Year

Performance of various verified symmetric crypto / hash implementations

A toolkit for scaling verification

• CI, build, regressions: single greatest productivity improvement

• Understanding packaging & distribution for deployments

• Reducing complexity: a subset of Low* for cryptography (students)

• Hybrid style for more robust proofs (e.g. calc, tactics)

• External collaborations thanks to open-source

More importantly:

•Many flavors of meta-programming to slash the proof-to-code ratio

Meta-programming in a nutshell
template

Hashtbl<typename T>

Hashtbl<MyEntry>
C++ compiler specializes to

class Hashtbl__Entry {
...

C++: Zero-cost abstraction, but limited expressive power

What we want:
- finer-grained control
- many flavors of meta-programming (partial evaluation, unrolling, rewriting)
- fully verified

Meta-programming in F*

F* meta-program

F* code
F* compiler runs the F*
meta-program to transform
the F* original program

rewritten F* code C code

- Script the compiler
- Driving the generation of C code
- Any flavor of metaprogramming
- No increased trust boundary

template HPKE<AEAD,DH,Hash>
Encode template specialization logic as a meta-program; TCB unchanged

- 1 generic implementation (write once)

- 3 existing DH implementations

- 11 existing hash implementations

- 5 existing AEAD implementations

- 165 possible combinations, we choose 14

1565 lines of F* à 5820 lines of C code proof to code ratio: 0.27

Meta-programming everywhere
- Integers: encode overloaded operators for 14 types of machine integers

- Algorithmic flavors (e.g. SHA, Blake, Curve)

- Type classes

- Functors for high-level crypto APIs that capture the essence of agility

- Loop unrolling in F*

My favorite:

- Vectorization: overloaded operators for vector types; write once, compile N times (CCS’20)

Language improvements for the next order of magnitude.

Production deployments of
Everest Verified Cryptography

Layered abstractions for
state, concurrency, and distribution in Steel

Application

Secure
communication

components

Message
formatter

Wire
formatter

Sign &
encrypt

Verify &
decrypt

Wire format
parser

Message
parser

State machines
& concurrency

State machines
& concurrency

Steel

Usage control on channels

Channel

Usage spec: S Dual Usage spec: Sf

Endpoint BEndpoint A

Session typed channels in Steel

Raising the level of abstracEon in Steel
• Libraries for locks on built on top of primitive atomic
instructions

• POSIX-style fork/join using structured parallelism &
locks

•Libraries for message passing on channels built as an
additional layer

• …

SteelCore: A Foundational Concurrent
Separation Logic Embedded in F*

Metaprogrammed
tactics in Meta-F*

Specify programs in concurrent
separa?on logic

{ P } e { Q }
--------------------------- [Frame]
{ P * F } e { Q * F }

{ P1 } e1 { Q1 }
{ P2 } e2 { Q2 }

------------------------------------ [Par]
{ P1 * P2 } e1 || e2 { Q1 * Q2 }

Verify programs using F*
metaprograms, tactics and Z3

hgps://www.fstar-lang.org/papers/steelcore/

https://www.fstar-lang.org/papers/steelcore/

Takeaways
We verify & deploy reusable, critical software components at scale
• Fully verifying or hardening critical subsystems
• Achieving high performance & usability

We aim to lower the bar and scale proofs further by

• Proof and code generation from domain-specific languages

•Metaprogramming to specialize, partially evaluate and optimize code

• Raising the level of abstraction in libraries for state, concurrency & distribution

Our ambitions

Advance the state of
the art in developing
high-assurance
cri=cal systems

Systems Programming,
Cryptography, Security, Privacy,
Scalable Proofs of Programs

Get formally-verified
code in production
Deliver the strongest technical
correctness, security & privacy
guarantees to our customers

