Programming with Proofs
for High-assurance Software

NIKHIL SWAMY

Senior Principal Researc her Computational Cybersecurity in
Microsoft Research, Redmond Compromised Environmen ts (C3E)

September 11, 2020

https://cps-vo.org/group/c3e

High assurance software?

technology

; icrosoft*

&L SQLAZUFG" qulic Verifiable multi-party
WIREQ "

TLS Attacks .
s Rea [RsAsizbit| sHAl computations

________________________ SLOTH - DROWN () .

FAST, MODERN, SE - mwm CR"I‘E ".mh Vewas)
N weaknesses el e : \ \“ ySte ria o

1 \ o~8 =~ | | BEAST protocol Attack ‘ Logjam o _
@ s R oL E-voting

Implergentation

ugs sKIP
r u Ct u re 2007 2008 2009 2010 2011 2012 2013 2014 2015 . E I eCt i on G ua rd

Formal proofs to the rescue

D Project Everest

< O

x P

B https://project-everest.github.io

Project Everest
Deploying

Builo

Ing and

Verified Secu

Ccom

municat

on Components 4

PrOjeCt Everest Papers People Inthe News Related Projects

Carnegie %,.

V4
| Mi
icrosoft &t s Mellon > |
“ ZLA— University lwrease

Project Everest aims to build and deploy a verified HTTPS stack

We are a team of researchers and engineers from several organizations, including Microsoft Research, Carnegie Mellon
University, INRIA, and the MSR-INRIA joint center.

Everest is a recursive acronym: It stands for the “Everest VERIfied End-to-end Secure Transport”.

=

p— =

Programming with proofs, at scale

Using F*, a new
verification oriented 160000
programming language MSR Everest ﬁ

developed at MSR o A
: Z3

500000

600,000 lines of code and
proof under continuous
integration

400000

300000

Sel4 OS
200000

Verified Lines of Code

100s of builds a week

. . 100000 INRIA CompCeft
with checking proofs of it O
functional correctness on 0 ~——

1985 1990 1995 2000 2005 2010 2015 2020 2025

an evolving systems Year

MSR IronClad

Program proofs in F* for billions
Automated parsing of unsuspecting users

untrusted data with proofs

Undisclosed 314 parties

in Hyper-V/VMSwitch

s .

gQIi Azure @ Quic
@ ﬁ WIREGUARD

Verified Quic transport,
cryptography in the MSQuic in Windows,
Linux kernel Verified crypto in Firefox,
mbedTLS,
Signal in Wasm,
Wireguard, ...

Verified Merkle trees

for Enterprise
blockchains

rewriting core trading
specifications and
Financial algorithms in F*
technology

Verifiable multi-pag Proven correct
Computatio high performance
Veritas -
@ Wysteria verifiable key-
_— E-vot value stores

ElectionGuard

Verified crypto for
ElectionGuard e-
Voting SDK

What do we prove?

Safety
Memory- and type-safety. Mitigates buffer overruns, dangling pointers, code injections.

Functional correctness
Our fast implementations behave precisely as our simpler specifications.

Secrecy
Access to secrets, including crypto keys and private app data is restricted according to design.

Cryptographic security
We bound the probability that an attacker may break any secrecy or integrity properties

Our specifications and implementations are written together, in one language (F*)
Drift between spec and implementation cannot happen.

Incremental deployment
of verified software

Whole stack replacement with formally proven software is a great goal
But, we need to incrementally evolve the current stack to get there

Carefully identify components that underpin the security and correctness of
high-value systems

Cryptographic components: primitives, constructions, and standardized protocols

Components that mediate access across trust boundaries, e.g., system call boundaries, virtualization
interfaces, ...

Program and prove drop-in replacements for those components
Bring decades of research in formal proofs to the real world, improving tools, methodologies
Harden existing systems with measurable benefits to overall system security

F*: A first example

KReMLin:
compiler from
(a subset of)
F*toC

F* implementation
and specification

Efficient C implementation
Verification imposes no
runtime performance
overhead

let multiply by 9 (a:uint32) : Pure uint32
(requires 9 * a <= MAX_UINT_32)
(ensures A result -> result == 9 * a)

let b = a << 3ul in
a+b

uint32 t multiply by 9(uint32 t a)
{
uint32_t b = a << (uint32_t)3;
return a + b;

F*: A logical framework
for effethL” progra mS and prOOfS EverParse Steel

TLS-1.3
record Vale Quic record

layer
Type-based . . Ry ShEapt
Multi-tier Protocol ~ Access Ven@&%&er LQ:WS@CU TypeScript assem ycc'(-,"\j% XN
programs analysis control PTO8@%¥cation ! comgilatio Signal

yadiee |

ulti-monadic-F* univer

L . ! * -- * . -
Fable \}:eZifiela%%rseFrX F5 F* monadic-F* relationa

generator

WebAssembly

Assembly

Applications

.rent and distributed
pragramnhingiwithtions
separation logic

4

Structured

USSR key:...; value:...}
Message N el o yoE Message
Client R WaitClientHello2
formatter Wa‘ServereIIo WaitserverHello2 \ ‘ S parser

v
v/ v = L/ -
WaitServerHelloDone /' WaitCCS1 WaitFinished1 -
T \ \ / eeeeeeeeeeee flo N\ severislooon
')
) e 'I'e @ ’ iy
v

{ key:...; value:...}

A T\ * .
cde7lafaedl6ac7b VA e | AR Cdec71afaed16ac7b
" e i Es State machines
) & concurrenc .
Sign & & concurrency Verify &
encrypt decrypt
Wire Wire format
formatter parser
Wire format
message with
signed,
encrypted <+ >

payload 3ef87abce4363 Olaldg CVERCRTPT oY

everparse

A Mathematically Proven, Efficient, Low-level Parser Generator

Improper parsing of
attacker-controlled input

c Common Weakness Enumeration
- A Community-Developed List of Software & Hardware Weakness Types

Home > CWE List > CWE- Individual Dictionary Definition

Home About

CWE-20: Improper Input Validation Bz eI
Weskneas 1D: 20 Serious Cloudflare bug exposed a

Structure: Simple

presentation riter: [Compels potpourri of secret customer data

-— W = _m=_ __

sed by 5.5 million websites may have leaked passwords and authentication tokens.
-2/23/2017, 5:35 PM

Bitcoin Transaction Malleability and MtGox The leakage was the result of a bug in an HTML parser chain

Cloudflare uses to modify webpages as they pass through the
Christian Decker Roger Wattenhofer PN . . .
ETH Zurich, Switzerland ETH Zurich, Switzerland Service's edge SEervers. [] When the parser was used In comblnatlon
cdecker@tik.ce.ethz.ch wattenhofer@ethz.ch with three Cloudflare features [...] it caused Cloudflare edge servers to
leak pseudo random memory contents into certain HTTP responses.”
Abstract

In Bitcoin, transaction malleability describes the fact that the signa-
tures that prove the ownership of bitcoins being transferred in a transac-
tion do not provide any integrity guarantee for the signatures themselves.
This allows an attacker to mount a malleability attack in which it inter-
cepts, modifies, and rebroadcasts a transaction, causing the transaction
issuer to believe that the original transaction was not confirmed. In Febru-
arv 2014 MtGox. once the largest Bitcoin exchange. closed and filed for

Microsoft Hyper-V: Traversing trust
boundaries deep in the software stack

Hyper-V High Level Architecture

Hyper-V is the core technology

. Root Partition ligh d lightened Unenlightened
isolating virtual machines in the | s | Chid Partition Chitd Parition chitd
Azure CIOUd | user A pplications | | user A pplications |
¥ Linux

Virtualized devices exposed to | Vi” il V‘f ‘ @ @
enlightened guests [- o

Driers 1 Drivers | Drivers
Attack Surface: Untrusted guest e | T
VM can send malformed packets =
to host kernel, E.g. trying to l 1 l

LA A i o) L .

Over'ﬂow the paCket buffer Hypervisor ’ Hypercalls . MSRs APIC Scheduler l Address Management Partition Manager

Data validation is challenging
at the guest/host boundary

 Handwritten code to validate messages from untrusted guests

* Tricky to write for several reasons
* Many variable-length structures and data-dependent unions
* Avoiding arithmetic overflow
* Layered protocols, with multiple headers to be parsed incrementally
* Sometime dealing with shared memory ... hard to be sure
* Double fetches can lead to time-of-check/time-of-use bugs

e Legacy C code, hard to deploy even basic modern bounds-checking
measures, e.g., C++ spans, Rust etc.,
* Plus bounds checking comes with runtime overhead

everparse

A Mathematically Proven Low-level Parser Generator

Our long-term goal
* Abolish writing low-level binary format parsers by hand

* Instead, specify formats in a high-level declarative notation
* Auto-generate performant, verified low-level code to parse binary messages
* Integrate seamlessly with existing codebases in a variety of languages (C, C++, Rust, ...)

With formal proofs that the code is:
 Memory safe (no access out of bounds, no use after free etc.)
* Arithmetically safe (no overflow/underflow)

* Functionally correct (that it parses exactly those messages that conform to the high-level spec)
* Free from double-fetches, so safe against time-of-check/time-of-use bugs

https://project-everest.github.io/everparse/

https://project-everest.github.io/everparse/

everparse

A Mathematically Proven Low-level Parser Generator

Our long-term goal
* Abolish writing low-level binary format parsers by hand

* Instead, specify formats in a high-level declarative notation
* Auto-generate performant, verified_Jow-level code to parse binary messages
* Integrate seamlessly with existing codebases

oyages (C, C++, 2

Provably correct by
With formal proofs that the code is: construction:

 Memory safe (no access out of bounds, no use after free etc.) Zero user proof effort
* Arithmetically safe (no overflow/underflow)

* Functionally correct (that it parses exactly those messages that conform to the high-level spec
* Free from double-fetches, so safe against time-of-check/time-of-use bugs

https://project-everest.github.io/everparse/

https://project-everest.github.io/everparse/

Hello. 3d:
Starting from a high-level language
f f t typedef struct Sample(mutable PUINT32 out) {
Of message rormats UINT32 MajorVersion { MajorVersion = 1 };
UINT32 MinorVersion { MinorVersion = 0 };
EverParse auto-generates F* parsing code thatis | “™'>2 ™n
UINT32 Max { Min <= Max }
* Safe ¢ ; - = Max}
orma
} SAMPLE, *PSAMH e
* Correct descriptions

* Fast (zero-copy) EVEIpArsE _~

Correctness: formal
specification ‘

parse (serialize msg) = msg

valid msg ==> serialize (parse msg) = msg low-level verified libraries
implementation for combinators

Performance:
similar to or better than handwritten code

Safe high-performance C code

Dependent Data Descriptions in 3D:
A source language of message formats

Constraints and actions augmenting C data types

typedef struct Sample(mutable PUINT32 out) {

UINT32 MajorVersion { MajorVersion = 1 };
UINT32 MinorVersion { MinorVersion = 0 };
UINT32 Min;

UINT32 Max { Min <= Max }

{:on-success *out = Max}
} SAMPLE, *PSAMPLE;

Dependent Data Descriptions in 3D:
A source language of message formats

Constraints and actions augmenting C data types

typedef union _MessageUnion { typedef struct _Message {
Init init; UINT32 tag;
MessageUnion message;
Query query,; } Message;
Halt halt;

} MessageUnion;

Dependent Data Descriptions in 3D:
A source language of message formats

Constraints and actions augmenting C data types

casetype MessageUnion(UINT32 tag) { typedef struct _Message {
switch(tag) { UINT32 tag;
case INIT MSG: MessageUnion(tag) message;
Init init; } Message;

case QUERY_MSG:

Query query;
case HALT MSG:

Halt halt;
}

} MessageUnion;

A Sample 3D Specification for several
|=mmmmee - DataOffset------------"-ooo---- | ----DataLength----- |
|=mmmme - Packetlength--------- oo .
o ———— variable-length structures
|---sizeof(this)--|
|----- Offset2------ | ----DataLength2----- |
-_*/
entrypoint UINT32 NumExtraElements
typedef struct __ SOME_PACKET (UINT32 PacketLength, { NumExtraElements <= MAX_EXTRA_ELEMENTS };
UINT32 HeaderlLength, UINT32 Offset2
mutable UINT32 *dataOffset, {:on-success
mutable UINT32 *datalength, *offset2 = Offset2:
mutable UINT32 *offset2, return true: ’
mutable UINT32 *length2) }; ’
where (sizeof(this) <= HeaderLength && : Datalength2
HeaderLength <= PacketlLength) ° Constraints
{ . .
UINT32 pataoffs * Actions with mutable outparameters)

{ sizeof(this) <= DataOffset } . .

{:0n-success * Variable-length data at designated offsets | orreet, patatengtnz) es
*dataOffset = DataOffset; . this) && ’ J
return true; * Tagged unions bth2 2: DataOffsset

3 °

UINT32 DatalLeng o
{ is_range_okay(PacketLength, DataOffset, DatalLength) } {:on-success
{:on-success *datalen = .
gth2 = DatalLength2
*ditaLeEgth = DatalLength; return true; ’
return true; };
s _ UINT32 Reserved;
UINT32 . FieldA } SOME_PACKET;
{ FieldA <= Bound_A };
UINT32 FieldB

{ FieldB <= Bound_B };

Generated C code, after verification

* C code aims to be human-readable, human
patchable

* Propagates comments from source spec

* Generates predictable descriptive names
BOOLEAN

CheckPacket(
uint32 t _ PacketLength,
uint32 t __ HeaderLength,
uint32 t *dataOffset,
uint32 t *datalength,
uint32 t *offset2,
uint32 t *datalLength2,
uint8 t *base,
uint32 t len);

Some case studies

Throughput ratio (higher is better)

Data Types Spec F* LoC 14 1,859 MB/s
TLS 1.2-1.3 315 1601 70k
10

Bitcoin 6 31 2k |
PKCS1 19 117 5k s old Bitcoin 134 M op/s
LowParse 33k * miTLS Core mbedTLS

2 1864 MB/s >584 MB/s 141 MB/ 31 M op/

o mm BN — L

TLS Handshake Validation Bitcoin DeserializeBlock PKCS1 Encode
* We can express real world formats mBascline W EverParse

* We scale to large and complex schemas
* We produce high-performance code

EverParse Takeaways: A Sweet Spot

o Good return on investment

o Parsing bugs => security vulnerabilities exploitable from the attack surface
o Focus defense efforts on parsing code

o EverParse: Push-button proofs and code-generation for low-level parsers

o Strong mathematical guarantees of safety and correctness
o Provably correct by construction: Zero user proof effort

o |t works in Windows and Microsoft Azure today, securing the parsing of every
packet that passes through the networking stack

EVERCRYPT

Industrial-grade verified cryptography at scale

Efficient crypto requires a lot of customizations

Poly1305: Uses the prime field withp = 213% — 5

Need 130 bits to represent a number

Efficient implementations require custom bignum libraries to delay carries
On X86: use 5 32-bit words, but using only 26 bits in each word

On X64: use 3 64-bit words, but using only 44 bits in each word

Curve25519: Uses the prime field with p = 22°> — 19
On X64: use 5 64-bit words, but using only 51 bits per word

OpenSSL has 12 unverified bignum libraries optimized for each case

Many bugs in Curve25519 implementations

(Cand assembly)

agl / curve25519-donna

Ed25519 amd64 bug

[©] gistfilel.md

® Watch

<> Code Issues 2 Pull requests 7 Projects 0 Wiki =

Correct bounds in 32-bit code.

The 32-bit code was illustrative of the tricks used in the original
curve25519 paper rather than rigorous. However, it has proven quite
popular.

This change fixes an issue that Robert Ransom found where outputs between
27°255-19 and 27255-1 weren't correctly reduced in fcontract. This
appears to leak a small fraction of a bit of security of private keys.

Additionally, the code has been cleaned up to reflect the real-world
needs. The refl@ code also exists for 32-bit, generic C but is somewhat
slower and objections around the lack of ghasm availibility have been
raised.

pmaser ©13 Curve25519-donna

. agl committed on Jun 9, 2014 1 parent

sv pack25519(u8 *o
{

e aly 9 5loF

gf m,t;

FOR(i,16) t[il=n

car25519(t);

car25519(t);
car25519(t);

FOR(j,2) {
m[@]=t[0]-0Oxff
for(i=1;i<15;1i

m[il=t[i]-0x
m[i-1]&=0xff
}
m[15]=t[15]-0x
b=(m[15]1>>16)&
m[15]&=0xffff;
sel25519(t, m,1-b);

}

FOR(i,16) {
o[2xi]=t[i]&0OxXff;
o[2xi+1]=t[i]>>8;

}

}

While visiting 30c3, | attended the You-broke-the-Internet workshop on NaCl. N a CI (a S l I I)

One thing mentioned in the talk was that auditing crypto code is a lot of work, and that this is one of the reasons why
Ed25519 isn't included in NaCl yet (they promised a version including it for 2014). The speakers mentioned a bug in the
amd64 assembly implementation of Ed25519 as an example of a bug that can only be found by auditing, not by
randomized tests. This bug is caused by a carry being added in the wrong place, but since that carry is usually zero, the
bug is hard to fint (occurs with probability 2*{-60} or so).

The TweetNaCl paper briefly mentions this bug as well:

Partial audits have revealed a bug in this software (r1 += @ + carry shouldbe r2 += @ + carry in
amd64-64-24k) that would not be caught by random tests; this illustrates the importance of audits.

Searching for this string in the SUPERCOP source code turns up four matches:

crypto_scalarmult\curve25519\amd64-64\fe25519_mul.s
crypto_scalarmult\curve25519\amd64-64\fe25519_square.s
crypto_sign\ed25519\amd64-64-24k\fe25519_mul.s
crypto_sign\ed25519\amd64-64-24k\fe25519_square.s

So it apprears like the amd64-64 implementation of both Curve25519 and Ed25519 is affected.

It seems difficult to exploit this when used for key generation or signing since the attacker cannot influence the data. Key-
exchange and signature verification might be a problem.

TweetNaCl

This bug is triggered when the last limb n[15] of the input argument n of
this function is greater or equal than @xffff . In these cases the result of
the scalar multiplication is not reduced as expected resulting in a wrong
packed value. This code can be fixed simply by replacing m[15]&=0xffff;

by m[14]&=0xffff; .

3 Bugs in OpenSSL implementation
of Poly1305

|[0penssl-dev] [openssl.org #4439] poly1305-x86.pl
OpenSSL Security Advisory [1© Nov 2016] produces incorrect output

“These produce wrong results. The first example does so only on 32 bit,
the other three also on 64 bit.”

“I believe this affects both the SSE2 and AVX2 code. It does seem to be

dependent on this input pattern.”

“I'm probably going to write something to generate random inputs and stress
all your other poly1305 code paths against a reference implementation.”

recommend doing the same in your own test harness, to make sure there 29
laren't others of these bugs lurking around.

Classified as Microsoft Confidential

Algorithm
AEAD

AES-GCM

Chacha20-Poly1305

ECDH
Curve25519
P-256
Signatures
Ed25519
P-256

Hashes

MD5

SHA1
SHA2-224,256
SHA2-384,512
SHA3

Blake2

Key Derivation
HKDF

Ciphers
Chacha20
AES-128,256
MACS

HMAC

Poly1305

Portable C (HACL*)

v (+ AVX,AVX2)

R " | | < <«

(+ AVX,AVX2)

v (+ AVX,AVX2)

(%4

v (+ AVX,AVX2)

Intel ASM (Vale)

v (AES-NI + CLMUL)

v (BMI2 + ADX)

v (SHAEXT)

v (see notes below)

v (AES-NI + CLMUL)

v (see notes below)

v (X64)

Agile API (EverCrypt)

R R < «

EverCrypt

A verified, no-excuses, industrial-grade cryptographic provider.

A replacement for: OpenSSL, BCrypt, libsodium.
- A collection of algorithms (exhaustive)

- Easy-to-use API (CPU auto-detection)

- Several implementations (multiplexing)

- APIs grouped by family (agility)

Clients get state-of-the art performance.

- 140,000 lines of Low™* and Vale
- 43,000 lines of C + 15,000 lines of ASM

Finally: speed and safety

Performance of various verified symmetric crypto / hash implementations

|
’ Vale AES-GCM-128 —:Ea—SIQSt
""""""""""""""""""""""""""""""""" ¢~ ----------1 OpenSSL

e - - - - - = -

|
' assembly
|
5 ' code
|
4
L
o
(V)
3
2
Jasmin ChaCha20 + Poly1305
Vale AES-GCM-128
¢
HACL* ChachaPol
! Vale AES-CBC+Poly1305 achaPoly Y
A Appel SHA2)
Ironclad Apps SHA256 ndrew Appel SHA256 Y
¢
0 9

2013 2014 2015 2016 2017 2018 2019 2020

A toolkit for scaling verification

* Cl, build, regressions: single greatest productivity improvement @ Hacl-Linux (hacl-ci) A7P' 12:15 PM
fd4135e9209f on (master) by protz
* Understanding packaging & distribution for deployments Build fix
* Success

. : " N
Reducing complexity: a subset of Low™ for cryptography (students) Duration - 00:21:30
* Hybrid style for more robust proofs (e.g. calc, tactics)

 External collaborations thanks to open-source

More importantly:

* Many flavors of meta-programming to slash the proof-to-code ratio

Meta-programming in a nutshell

template
Hashtbl<typename T>

Hashtbl<MyEntry> class Hashtbl _Entry {
C++ compiler specializes to

C++: Zero-cost abstraction, but limited expressive power

What we want:

- finer-grained control

- many flavors of meta-programming (partial evaluation, unrolling, rewriting)
- fully verified

Meta-programming in F*

F* meta-program

rewritten F* code _V

F* compiler runs the F*
meta-program to transform
the F* original program

- Script the compiler

- Driving the generation of C code
- Any flavor of metaprogramming
- No increased trust boundary

template HPKE<AEAD,DH,Hash>

Encode template specialization logic as a meta-program; TCB unchanged

- 1 generic implementation (write once) Any combination is valid: HPKE thus has 24 possible ciphersﬁites, |

_ ot ; ; and many more implementation combinations.
3 existing DH implementations Individually verifying all these would be intractable. However,
- 11 existing hash implementations using the integrated HACL* library, we can build a generic imple-
mentation of HPKE in 800 lines of code, in a way that is abstract in
- 5 existi ng AEAD im pIement ations the choice of its KEM, KDF and AEAD implementation. To instanti-

- 165 possible combinations, we choose 14

1565 lines of F* = 5820 lines of C code proof to code ratio: 0.27

Meta-programming everywhere

- Integers: encode overloaded operators for 14 types of machine integers

- Algorithmic flavors (e.g. SHA, Blake, Curve)
- Type classes

- Functors for high-level crypto APIs that capture the essence of agility

- Loop unrolling in F*

My favorite:

- Vectorization: overloaded operators for vector types; write once, compile N times (CCS’20)

Language improvements for the next order of magnitude.

Production deployments of
Everest Verified Cryptography

eL6

?AEEB All using Everest verified crypto

== Windows MSQuic integrates Everest TLS 1.3 and crypto

A Microsoft Azure Using Everest crypto and verified Merkle trees in
Azure Confidential Computing

Layered abstractions for
state, concurrency, and distribution in Steel

Structured
SNl key:...; value:...}

Message
formatter

{ key:...; value:...}

L = Message
L \ Server parser

cde/lafaed16ac/b [y | LR cde71afaed416ac7b
State machines State machines

&
Sign & & concurrency concurrency Verify &
encrypt decrypt
W|re Wire format
formatter parser

Wire format
message with
signed,
encrypted
payload 3ef87abce4363 untrusted network

3ef87abce4363

Usage control on channels

Usage spec: S Dual Usage spec: §

Transmon 2 < noitizns1T @

Transmon 1 '/\ M noifizns1T
Endpoint A Channel @ Endpoint B
Transmon 3) ‘ < noiizneT ¢ /f\ & noitisnstT

< noifiznerT \m o
T Ch N noifins1T
ransmon 4 I annel @ - mT\ / j ofiens!

. ofsie
@ Transition 2 Cha n nel
Tran Transition 1 T g nobls "S‘T
Channel
Tren Channel sm {rersre
Tran .

Transition 3

Transition 4!
N @
State n

nnnnnnnn

Session typed channels in Steel

let pingpong = let client (c:chan pingpong)
X <— Protocol.send Z; = send c 17;
y <— Protocol.recv (y:Z{y > x}); let y = recv c in
Protocol.done assert (y > 17);
return ()

let client _server () .
= let ¢ = new _chan pingpong in let server (c:chan pingpong)

. = let y = recv ¢ in
par (client c) (server c) send ¢ (y + 42);

t
let many (n:N) = join (spawn n client_server) return ()

Raising the level of abstraction in Steel

* Libraries for locks on built on top of primitive atomic
instructions

* POSIX-style fork/join using structured parallelism &
locks

Libraries for message passing on channels built as an
additional layer

module
module

module
module

module

module

module

Steel.
Steel.

Steel.
Steel.

Steel.

Steel.

Steel.

Effect.Atomic
SpinLock

Primitive.ForkJoin
Channel.Duplex

Channel.BinaryFormatted
Channel.Cryptographicall

Channel.Secure

SteelCore: A Foundational Concurrent
Separation Logic Embedded in F*

Specify programs in concurrent
separation logic

{P1*P23}el || e {0Q1*Q2}

Verify programs using F*
metaprograms, tactics and Z3

Metaprogrammed P ZB|
tactics in Meta-F* /
https://www.fstar-lang.org/papers/steelcore/

. Layered Indexed Effects I

’; Foundations and Applications of Effectful Dependentlv Tvped Programming

:
. ASEEM RASTOGI,
« GUIDO MARTINE

AYMERIC FROMH
¢ TAHINA RAMANA SteelCore: An Extensible Concurrent Separation Logic for
o NIKHIL SWAMY, A
w0

Effectful Dependently Typed Programs

NIKHIL SWAMY, Microsoft R h, USA
ASEEM RASTOGI, Microsoft rch, India
AYMERIC FROMHERZ, ¢:
DENIS MERIGOUX,
DANEL AHMAN, Uni

https://www.fstar-lang.org/papers/steelcore/

ooooo

ooooo

Takeaways

We verify & deploy reusable, critical software components at scale
* Fully verifying or hardening critical subsystems
* Achieving high performance & usability

We aim to lower the bar and scale proofs further by
* Proof and code generation from domain-specific languages
* Metaprogramming to specialize, partially evaluate and optimize code

* Raising the level of abstraction in libraries for state, concurrency & distribution

Our ambitions

Research Applications
Advance the state of Get formally-verified
the art in developing code in production

high-assurance

2 Deliver the strongest technical
critical systems

correctness, security & privacy
guarantees to our customers
Systems Programming,

Cryptography, Security, Privacy,
Scalable Proofs of Programs

