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Information technology supply chain: headlines
Recall previous talk by Dean Collins.

Che New 1Jork Times  (May 9, 2008)
“F.B.I. Says the Military Had Bogus Computer Gear”

(October 6, 2008)

“Chinese counterfeit chips causing military hardware
crashes”

Che New AJork Eimes  (vay 6, 2010)
“A Saudi man was sentenced 1. to four years 1n prison

for selling counterfeit computer parts to the Marine Corps
for use 1n Iraq and Afghanistan.”

Validation? Verification? Certification?
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Example: cache attacks.
Textbook virtualized architecture:
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Another virtualized architecture:
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Bedtime stories vs. architectural crosstalk
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Cross-talk through architectural channels
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Cross-talk through architectural channels
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Cross-talk through architectural channels

hardware resources (| Attacker

>

« Contention for shared C@(\(\ dml
Victim

« Example: contention for
CPU data cache leaks
memory access
patterns: addresses
and timing.
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Cross-talk through architectural channels
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hardware resources  (
Example: contention for

>

CPU data cache leaks

Contention for shared @Y\ N
Attacker Victim 3

memory access
patterns: addresses
and timing.

The cached data is
subject to memory

protection...
but even the metadata

IS sensitive information!
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Experimental results [Osvik Shamir Tromer 05]
[Tromer Osvik Shamir 09]

Stealing a disk encryption on a desktop:
(128-bit AES encryption, Linux dm-crypt)

Full key extracted from 65ms of measurements.

te is 0x00 Secret key byte is 0x5
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Measuring a “black box” OpenSSL encryption on Athlon 64, using 10,000 samples. Horizontal axis:
evicted cache set. Vertical axis: p[0]1 (left), p[51 (right).Brightness: encryption time (normalized)
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Information Leakage in Third-Party Compute Clouds
[Ristenpart Tromer Shacham Savage 09]

Demonstrated, using Amazon EC2 as a study case:

* Cloud cartography
Mapping the structure of the “cloud” and
locating a target on the map.
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» Placement vulnerabilities
An attacker can place his VM on the same physical
machine as a target VM (40% success for a few dollars).

* Cross-VM exfiltration
Once VMs are co-resident, information
can be exfiltrated across VM boundary:

— Covert channels

— Load traffic analysis

— Keystrokes
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Example: acoustic signatures of RSA signatures
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[Shamir Tromer]
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High-level goal

23

Ensure properties of a
distributed computation
when parties are
mutually untrusting,
faulty, leaky
&

malicious.
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Approach: Proof-Carrying Data

\ .- >#
e

« Every message is augmented with a proof attesting to its
“compliance”.

« Compliance can express any property that can be verified by
locally checking every node.

* Proofs can be verified efficiently and retroactively.
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Toy example: 3-party correctness

Alice Bob Carol

X, F G
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Example: trivial solution

Alice Bob

Carol can recompute everything, but:
« Uselessly expensive

* Requires Carol to fully know x,F,G

— We will want to represent these via short
hashes/signatures

26
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Example: Proof-Carrying Data [Chiesa Tromer 09]

following Incrementally-Verifiable Computation [Valiant 08]
Alice Bob Carol
X, F G
Yy Z
> >
7ty Ty
_ z=G(y)
y=F(x) and | got a valid proof
that “y=F(x)’

Each party prepares a proof string for the next one.
Each proof is:

* Tiny (polylogarithmic in party’s own computation).
 Efficiently verifiable by the next party.
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Generalizing:

The
Proof-Carrying Data
framework



Generalizing: distributed computations

Distributed computation:

Parties exchange messages and perform computation.
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Generalizing: arbitrary interactions

 Arbitrary interactions
— communication graph over time is any DAG
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Generalizing: arbitrary interactions

« Computation and graph are determined on the fly

— by each party’s local inputs:
human inputs randomness program
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Generalizing: arbitrary interactions

« Computation and graph are determined on the fly

— by each party’s local inputs:
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correctness
of dynamic distributed
computation?
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C-compliance

System designer specifies his notion of correctness via a
compliance predicate C(in,code,out)
that must be locally fulfilled at every node.

code (program, human inputs, randomness)

accept / reject

out C-compliant
distributed
computation

CSAILL MG



Examples of C-compliance

correctness is a compliance predicate C(in,code,out)
that must be locally fulfilled at every node

Some examples:
= “the output is the result of correctly computing a prescribed
program”

= “the output is the result of correctly executing some program
signed by the sysadmin”

@ = “the output is the result of correctly executing some

type-safe program” or “... “program with a valid formal proof”
1 1
4
o M e
M4 |2 e my
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Goals

Ensure C-compliance while respecting the
original distributed computation.

 Allow for any interaction between parties

* Preserve parties’ communication graph
— no new channels

Allow for dynamic computations
— human inputs, indeterminism, programs

Blowup in computation and communication is local
and polynomial
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Dynamically augment computation with proofs strings

In PCD, messages sent between parties are augmented
with concise proof strings attesting to their “compliance”.

Distributed computation evolves like before, except that
each party also generates on the fly a proof string to
attach to each output message.

38



Model

Every node has access to a simple, fixed, stateless
trusted functionality -- essentially, a signature card.

« Signed-Input-and-Randomness (SIR) oracle

R
((\[x
9




(Some) envisioned applications



Correctness and integrity of IT supply chain

41

Consider a system as a collection of components,
with specified functionalities

— Chips on a motherboard
— Servers in a datacenter
— Software modules

C(in,code,out) checks if the component’s
specification holds

Proofs are attached across component boundaries

If a proof fails, computation is locally aborted
— integrity, attribution

CSA I LN



Application: type safety

C(in,code,out) verifies that

code Is type-safe & out=code(in)

« Using PCD, type safety can be maintained
— even if underlying execution platform is untrusted
— even across mutually untrusting platforms

* Type safety is very expressive

— Can express any computable property
— Extensive literature on types that can be verified efficiently
(at least with heuristic completeness — good enough!)

42 C S A I I. dlzig Illil-



Multilevel security through Information Flow Control

43

Computation gets “secret” and “non-secret”
iInputs
“non-secret’” Inputs are signed as such

Any output labeled "non-secret” must be
independent of secrets

Use C to allow only computation on non-secret
iInputs, according to a fixed schedule.

— Initial inputs must be signed

— Subsequent computation respect Information Flow
Control rules and follow fixed schedule

Censor at system’s perimeter:
— Verifies proof on every outgoing message
— Lets out only non-secret data.

C S A I I. dlig |||il-



Simulations and MMO

Distributed simulation:
— Physical models
— Virtual worlds (massively multiplayer online virtual reality)

* How can participants prove they have

“obeyed the laws of physics™?
(e.g., cannot reach through wall into bank safe)

* Traditional: centralized.

« P2P architectures strongly motivated but insecure
[Plummer '04] [GauthierDickey et al. ‘04]

« Use C-compliance to enforce the laws of physics.
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Simulations and MMO: example

* Alice and Bob playing on an airplane, can later
rejoin a larger group of players, and prove they did
not cheat while offline.

“While on the plane,
| won a billion dollars,
and here is a proof for
that”

CSAILL MG




Our results



Our results

* Formally define Proof Carrying Data

— System administrator defines the compliance
predicate

— Existing software is mechanically translated to
add proof generation

— Compliance is automagically guaranteed

* Show a theoretical construction
— “Polynomial time” — not yet practically feasible
— Requires signature cards

47 CSAILL:ZSNGK



Vision

type safety
/ fault isolation & accountability
multilevel security

PCDT?
x:financial systems

distributed dynamic
program analysis

.\ proof-carrying code
« antispam emaill policies

A

Security design reduces to “compliance engineering’:
write down a suitable compliance predicate C.
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Proof-Carrying Data:
Conclusions and open problems

Contributions

« Framework for securing distributed computations between
parties that are mutually untrusting and potentially faulty,
leaky, and malicious

« EXxplicit construction, under standard generic assumptions, in
a “signature cards” model

e Suggested applications

Ongoing and future work

* Achieve practicality (“polynomial time” PCP is not good enough!)

* Reduce requirement for signature cards, or prove necessity
« Add zero-knowledge constructions

 ldentify and realize applications
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Thanks!

THIS
MORNING:

confidential / private

confidential / private
network

network

unclassified
network

2 HOURS
LATER:

Invalid proof.
Security violated!

Data release
TbIocked.

Valid proof of
correct computation.
Data release
ermitted.
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