Proof-Carrying Data
secure computation
on untrusted execution platforms

Eran Tromer

Joint work with

Alessandro Chiesa
Ronald L. Rivest

A

2

CSAIL Iif

Motivation

CORRECTNESS CONFINEMENT

SOFTWARE

* Bugs
* Trojans

 Software engineering (review, tests)
« Formal verification, static analysis
»Language type safety

* Dynamic analysis

» Reference monitors

CSAILL MG

Motivation

CORRECTNESS CONFINEMENT
B » Software engineering (review, tests)
SOFTWARE ug,S « Formal verification, static analysis
* Trojans

»Language type safety
* Dynamic analysis

NETWORK |+ Lack of trust | *Reference monitors

3 CSAILL MG

Motivation

CORRECTNESS CONFINEMENT

SOFTWARE

* Bugs
* Trojans

NETWORK

e Lack of trust

 Software engineering (review, tests)
« Formal verification, static analysis
»Language type safety

* Dynamic analysis

» Reference monitors

PLATFORM

« Cosmic rays

T supply chain

Hardware bugs
Hardware trojans

CSAILL MG

Information technology supply chain: headlines
Recall previous talk by Dean Collins.

Che New 1Jork Times (May 9, 2008)
“F.B.I. Says the Military Had Bogus Computer Gear”

(October 6, 2008)

“Chinese counterfeit chips causing military hardware
crashes”

Che New AJork Eimes (vay 6, 2010)
“A Saudi man was sentenced 1. to four years 1n prison

for selling counterfeit computer parts to the Marine Corps
for use 1n Iraq and Afghanistan.”

Validation? Verification? Certification?

Motivation

CORRECTNESS CONFINEMENT

SOFTWARE | Bugs

* Trojans
NETWORK e Lack of trust

. —Fqult analysis

* Cosmic rays * Architectural

 Hardware bugs .
PLATFORM J side-channels

ardware trojans

[supply chain

(e.g.,
cache attacks)

CSAILL MG

Example: cache attacks.
Textbook virtualized architecture:

X

Process

g

Process

Hardware

Another virtualized architecture:

8 CSAILZINE

Bedtime stories vs. architectural crosstalk

.

Process

—

Process

Hardware

Cross-talk through architectural channels

10

Contention for shared
hardware resources

¢

acess
}

.

Process

N

Process

Hardware

CSA LM ir

Cross-talk through architectural channels

« Contention for shared (\@j—\(\

hardware resources (" Attacker

« Example: contention for g
CPU data cache

Hardware

Victim

Cross-talk through architectural channels

« Contention for shared @Y\

hardware resources (" Attacker

« Example: contention for E
CPU data cache

Hardware

0060000000000
NI

<1 ns latency

Cross-talk through architectural channels

« Contention for shared @Y\ ==

hardware resources (" Attacker

« Example: contention for i
CPU data cache

00O PeColee e e

Hardware

Cross-talk through architectural channels

/\/\,\
« Contention for shared @—\(\

hardware resources (" Attacker
« Example: contention for B

CPU data cache

00O PeColee e e

~100 ns latency <1 ns latency

14]

Cross-talk through architectural channels

hardware resources (| Attacker

>

« Contention for shared C@(\(\ dml
Victim

« Example: contention for
CPU data cache leaks
memory access
patterns: addresses
and timing.

= =6 XK
»»»»»»»»»»»»»»»
rrrrr

ORI

~100 ns latency <1 ns latency

15 CSAILZINE

Cross-talk through architectural channels

16

/\/\,\

hardware resources (
Example: contention for

>

CPU data cache leaks

Contention for shared @Y\ N
Attacker Victim 3

memory access
patterns: addresses
and timing.

The cached data is
subject to memory

protection...
but even the metadata

IS sensitive information!

boeooec

T T S

o ©.6.6.6.0
02620, IR

CSAILYSIGE

Experimental results [Osvik Shamir Tromer 05]
[Tromer Osvik Shamir 09]

Stealing a disk encryption on a desktop:
(128-bit AES encryption, Linux dm-crypt)

Full key extracted from 65ms of measurements.

te is 0x00 Secret key byte is 0x5

0

— P — - - ——
E———— —— e e = = e
18 e e e e = 18
92 et ey o Mo ome se—en o S ee 32
48 e e B M e e 48
e e L . o — T — e e —]
O e oot - e B e R o
B e e ey E e e e 8
9B o A e e T ey S 96
e N e T e e eI 112
= e e e e e
e e e e e S el 1as
M e e B e ey~ =
100 —frm e R e S e e et o 160
176 o e e RS e g 178
e o = s T m el e e e
192 A - .:—:_c_:_::; e e o T S 182
208 T oeme— = m = See_—tomaemeg So T e e m s e 208
2 = S T e T e e 224
w e e e S 240
- = ———=— R == - — — i e ————
253 — =_- — |_ e -"..__(—__=_ — R __ E —— 2&

£
>
]
&
'3

0 16 a2 48

Measuring a “black box” OpenSSL encryption on Athlon 64, using 10,000 samples. Horizontal axis:
evicted cache set. Vertical axis: p[0]1 (left), p[51 (right).Brightness: encryption time (normalized)

17 CSAILZINE

Information Leakage in Third-Party Compute Clouds
[Ristenpart Tromer Shacham Savage 09]

Demonstrated, using Amazon EC2 as a study case:

* Cloud cartography
Mapping the structure of the “cloud” and
locating a target on the map.

)

O RTINS EE N RN B . [XJ

e 0@ 0 gy i Npe . sarm @0 0

F® ¥, LA IR
L0 B

» Placement vulnerabilities
An attacker can place his VM on the same physical
machine as a target VM (40% success for a few dollars).

* Cross-VM exfiltration
Once VMs are co-resident, information
can be exfiltrated across VM boundary:

— Covert channels

— Load traffic analysis

— Keystrokes

18 CSAILL MG

Motivation

CORRECTNESS CONFINEMENT
SOFTWARE | Bugs
* Trojans
NETWORK e Lack of trust
» Cosmic rays Fault analysis
PLATFORM * Hardware bugS » Architectural

Hardware trojans

T supply chain

side-channels
(e.g., cache)

19

CSAILL MG

Motivation

CORRECTNESS CONFINEMENT

SOFTWARE | Bugs

* Trojans
NETWORK |« Lack of trust

« Cosmic rays Fault analysis
PLATFORM * Hardware bugs * Architectural

* Hardware trojans side-channels

* IT supply chain (e.g., cache)

* Physical
ENVIRONMENT |« Tampering side-channels

(EM, power, acoustic)

20

CSAILL MG

Example: acoustic signatures of RSA signatures

21

[Shamir Tromer]

frequenc

i i2aTe | SR AP B T ¢ S i

CSAILL MG

Motivation

CORRECTNESS CONFINEMENT

SOFTWARE | Bugs

* Trojans
NETWORK |« Lack of trust

« Cosmic rays Fault analysis
PLATFORM * Hardware bugs * Architectural

* Hardware trojans side-channels

* IT supply chain (e.g., cache)

* Physical
ENVIRONMENT |« Tampering side-channels

(EM, power, acoustic)

22

CSAILL MG

High-level goal

23

Ensure properties of a
distributed computation
when parties are
mutually untrusting,
faulty, leaky
&

malicious.

I .
: .
sl L 11|

Approach: Proof-Carrying Data

\ .- >#
e

« Every message is augmented with a proof attesting to its
“compliance”.

« Compliance can express any property that can be verified by
locally checking every node.

* Proofs can be verified efficiently and retroactively.

24 C S AllL dlcder

Toy example: 3-party correctness

Alice Bob Carol

X, F G

25 CSAILL MG

Example: trivial solution

Alice Bob

Carol can recompute everything, but:
« Uselessly expensive

* Requires Carol to fully know x,F,G

— We will want to represent these via short
hashes/signatures

26

Carol

CSA I LN

Example: Proof-Carrying Data [Chiesa Tromer 09]

following Incrementally-Verifiable Computation [Valiant 08]
Alice Bob Carol
X, F G
Yy Z
> >
7ty Ty
_ z=G(y)
y=F(x) and | got a valid proof
that “y=F(x)’

Each party prepares a proof string for the next one.
Each proof is:

* Tiny (polylogarithmic in party’s own computation).
 Efficiently verifiable by the next party.

28 S LU

Generalizing:

The
Proof-Carrying Data
framework

Generalizing: distributed computations

Distributed computation:

Parties exchange messages and perform computation.

=

}' - ' m,
-

31 CSAILL MG

=

Generalizing: arbitrary interactions

 Arbitrary interactions
— communication graph over time is any DAG

-
‘%

}' - ' m,
-

32 CSAILL MG

Generalizing: arbitrary interactions

« Computation and graph are determined on the fly

— by each party’s local inputs:
human inputs randomness program

888
TTEEER LLLL @
'TIRERE ERi11111
el brke
el brke
—_ 333
L= s R

2202220 | Bi11111
ckcic] foicic zz0zz2z1 I
A A
I : 3330333
c =Illlaaa]| EEEN L
EEii111 EEii111
@ 2202221 2202220 | A
[fekcke: |

33 CSAILL MG

Generalizing: arbitrary interactions

« Computation and graph are determined on the fly

— by each party’s local inputs:
human inputs randomness program

888
TTEEER Ll @
‘1 IRERE Bl11111 >
ol 2z02220 ‘.:°..

How to define
correctness
of dynamic distributed
computation?

(111 EEEN
1 G 1
[| | | [0

ERi1111
2202220 | Bi11111
ckcic] foicic zz0zz2z1 I
: 33303233
c =Illlaaa]| EEEN L
ERi1111 ERi1111

2202221 2202221 A
23330333 23330333

34 CSAILL MG

C-compliance

System designer specifies his notion of correctness via a
compliance predicate C(in,code,out)
that must be locally fulfilled at every node.

code (program, human inputs, randomness)

accept / reject

out C-compliant
distributed
computation

CSAILL MG

Examples of C-compliance

correctness is a compliance predicate C(in,code,out)
that must be locally fulfilled at every node

Some examples:
= “the output is the result of correctly computing a prescribed
program”

= “the output is the result of correctly executing some program
signed by the sysadmin”

@ = “the output is the result of correctly executing some

type-safe program” or “... “program with a valid formal proof”
1 1
4
o M e
M4 |2 e my
O i
m2 — m 5 (o — m7
1 £ \—
o
1

36]

Goals

Ensure C-compliance while respecting the
original distributed computation.

 Allow for any interaction between parties

* Preserve parties’ communication graph
— no new channels

Allow for dynamic computations
— human inputs, indeterminism, programs

Blowup in computation and communication is local
and polynomial

37 C S A I I. Jf/julllil-

Dynamically augment computation with proofs strings

In PCD, messages sent between parties are augmented
with concise proof strings attesting to their “compliance”.

Distributed computation evolves like before, except that
each party also generates on the fly a proof string to
attach to each output message.

38

Model

Every node has access to a simple, fixed, stateless
trusted functionality -- essentially, a signature card.

« Signed-Input-and-Randomness (SIR) oracle

R
((\[x
9

(Some) envisioned applications

Correctness and integrity of IT supply chain

41

Consider a system as a collection of components,
with specified functionalities

— Chips on a motherboard
— Servers in a datacenter
— Software modules

C(in,code,out) checks if the component’s
specification holds

Proofs are attached across component boundaries

If a proof fails, computation is locally aborted
— integrity, attribution

CSA I LN

Application: type safety

C(in,code,out) verifies that

code Is type-safe & out=code(in)

« Using PCD, type safety can be maintained
— even if underlying execution platform is untrusted
— even across mutually untrusting platforms

* Type safety is very expressive

— Can express any computable property
— Extensive literature on types that can be verified efficiently
(at least with heuristic completeness — good enough!)

42 C S A I I. dlzig Illil-

Multilevel security through Information Flow Control

43

Computation gets “secret” and “non-secret”
iInputs
“non-secret’” Inputs are signed as such

Any output labeled "non-secret” must be
independent of secrets

Use C to allow only computation on non-secret
iInputs, according to a fixed schedule.

— Initial inputs must be signed

— Subsequent computation respect Information Flow
Control rules and follow fixed schedule

Censor at system’s perimeter:
— Verifies proof on every outgoing message
— Lets out only non-secret data.

C S A I I. dlig |||il-

Simulations and MMO

Distributed simulation:
— Physical models
— Virtual worlds (massively multiplayer online virtual reality)

* How can participants prove they have

“obeyed the laws of physics™?
(e.g., cannot reach through wall into bank safe)

* Traditional: centralized.

« P2P architectures strongly motivated but insecure
[Plummer '04] [GauthierDickey et al. ‘04]

« Use C-compliance to enforce the laws of physics.

44 CSAIL aVlsls) L

Simulations and MMO: example

* Alice and Bob playing on an airplane, can later
rejoin a larger group of players, and prove they did
not cheat while offline.

“While on the plane,
| won a billion dollars,
and here is a proof for
that”

CSAILL MG

Our results

Our results

* Formally define Proof Carrying Data

— System administrator defines the compliance
predicate

— Existing software is mechanically translated to
add proof generation

— Compliance is automagically guaranteed

* Show a theoretical construction
— “Polynomial time” — not yet practically feasible
— Requires signature cards

47 CSAILL:ZSNGK

Vision

type safety
/ fault isolation & accountability
multilevel security

PCDT?
x:financial systems

distributed dynamic
program analysis

.\ proof-carrying code
« antispam emaill policies

A

Security design reduces to “compliance engineering’:
write down a suitable compliance predicate C.

48 CSA I Luk

Proof-Carrying Data:
Conclusions and open problems

Contributions

« Framework for securing distributed computations between
parties that are mutually untrusting and potentially faulty,
leaky, and malicious

« EXxplicit construction, under standard generic assumptions, in
a “signature cards” model

e Suggested applications

Ongoing and future work

* Achieve practicality (“polynomial time” PCP is not good enough!)

* Reduce requirement for signature cards, or prove necessity
« Add zero-knowledge constructions

 ldentify and realize applications

49 C S A I I. dlie |||il-

Thanks!

THIS
MORNING:

confidential / private

confidential / private
network

network

unclassified
network

2 HOURS
LATER:

Invalid proof.
Security violated!

Data release
TbIocked.

Valid proof of
correct computation.
Data release
ermitted.

- - = wm o= —_— e - m mmm

