
Reasoning about the
Robustness of Protocols

Eunsuk Kang

High Confidence Software & Systems Conference
May 9, 2023

Security Analysis: Elements

System Environment Security
Property

Protocols, security
architecture,
policies…

Confidentiality,
integrity,
availability…

Threat model
Assumptions about non-malicious
environmental entities (users,
physical devices, networks…)

System Environment

Security Analysis: Goal

Security
Property

Does the system, when deployed under the
assumed environment, satisfy the property?

System Environment

Security Analysis: Challenges

Security
Property

1. How do we know what assumptions we are making?
2. What if our assumptions turn out to be wrong/broken?

Example: E-Voting Attack (ES&S iVotronic)

Voters walk away from the machine before pressing “confirm”
Election officials enter booth, press “back” & modify the vote

Example: E-Voting Attack

Alternative designs might mitigate this issue:
e.g., timeout after no response, require PIN after confirm

Assumed user behavior: Complete the voting process with “confirm”
But in practice, this assumption may sometimes fail to hold!

Problem

Once a system is deployed, its actual environment
may deviate from the assumed one, possibly
undermining the security property.

Can we provide tools to aid developers in this process?

Can we design systems that are robust – providing
security even under the presence of such deviations?

Robust-by-Design Systems
Specification

What does it mean for our
system to be robust?

Robustification
How do we improve

its robustness?

Analysis
How robust is
our system?

Robust-by-Design Systems
Specification

What does it mean for our
system to be robust?

Robustification
How do we improve

its robustness?

Analysis
How robust is
our system?

Robustness: Formal Definition

Deviations

System (M) is robust against a set of deviations () with
respect to environment (E) and security property (P)
System (M) is robust against a set of deviations () with
respect to environment (E) and security property (P)

Deviated environment

Robustness: Formal Definition

System (M) is robust against a set of deviations () with
respect to environment (E) and security property (P)

Examples:
User errors (e.g., omit
a critical action)
Network failures
Sensor noise
Changes in attacker
knowledge/capabilities
…

Robustness: Another View

Normative
environment (E)

Tolerable deviations ()

Intolerable deviations ()

System may violate its
security property under these

System can be securely
deployed in these
environments

Normal, expected
environment

Overall robustness = maximal set
Larger ⇒ more robust system!

Automata-Theoretic Definition
Transition
systems

Logical
specification

Additional traces
(i.e., behaviors)

E with additional
behaviors

Example: Voting Machine as Transition Systems

16

6.3 Voting

Background In this section, we consider a case study of an electronic voting machine,
introduced in [40]. In this case study, we model the voting machine, a voter, and
a corrupt election official who attempts to “flip” the voter’s choice. We define the
voting machine as the composition of a voting booth and a user interface, show in
Figures 10a and 10b respectively.

In the normative environment, the voter enters the booth, enters her password, se-
lects a candidate, clicks the vote button, and finally confirms the choice. Unfortunately,
some voters do not realize they must confirm their choice and leave the booth early.
This deviation from the normative behavior presents an opportunity for the election
official to “flip” the intended vote. Once a candidate leaves the booth early, the
corrupt official can flip the vote by entering the booth, selecting the back button twice,
selecting a new candidate, clicking the vote button, and finally confirming the choice.

booth
empty

voter in
booth

v.enter v.exit

pass, select, vote, cfm, back

official
in booth

eo.exit

eo.enter

select,
vote,
cfm,
back

(a) The voting booth model.
Both the voter and the
election official can operate
the voting machine while in
the booth, but only the voter
knows her password.

enter
password:

select
candidate:

1 2 1 2

vote 1

confirm

pass select vote

cfm

back back

(b) The user interface for the voting machine.

booth
empty

enter
pass-
word

select
candi-
date

confirm
candi-
date

v.enter pass

select

votecfm

v.exit

leave
booth

vote for
candi-
date

(c) The normative environment for the
voting case study.

booth
empty

enter
pass-
word

select
candi-
date

confirm
candi-
date

v.enter pass

select

votecfm

v.exit

leave
booth

vote for
candi-
date

v.enter

v.exit select

select, votevote

select, vote

select, v
ote

cfm

pass

select,
vote

(d) To visualize the robustness of the voting
machine with respect to Pall, we display the
maximal robust deviation on the state space
of the normative environment.

Fig. 10: We show the two components of the voting machine, the voting booth and
the user interface. We also show the normative environment and a representation
of the voting machine’s robustness. In the figures above, the prefix “v” represents
actions by the voter, while the prefix “eo” represents actions by the election official.

Voting Interface

System (M) = Voting Interface || Booth

24

Case study figures

x x x
beam ready

up, enter up, x, e enter

x, e enter

up

beamReady b

finished

Fig. 11: In the Therac-25 case study, Penv restricts the environment to firing the
beam at most once.

booth
empty

voter in
booth

v.enter v.exit

pass, select, vote, cfm, back

official
in booth

eo.exit

eo.enter

select,
vote,
cfm,
back

(a) Voting booth model.

enter
password:

select
candidate:

1 2 1 2

vote 1

confirm

pass select vote

cfm

back back

(b) User interface for the voting machine.

Fig. 12: Models for the voting machine example. In the figures above, the prefix
“v” represents actions by the voter, while the prefix “eo” represents actions by the
election official.

un-
plugged

pump
off

pump
On

plug_in turn_on

pump
off

unit
un-

lockedset_rate
turn_offunplug

treat-
ment
active

unit
locked

dosages
set

line
locked

settings
cfm’ed

lock_line
confirm_
settings

lock_unit

start_
dispense

unlock_
unit

erase_and_
unlock_line

Fig. 13: The normative environment for the PCA pump.

Booth

Voting Machine as Transition Systems

Security
Property (P)

“No user can change the vote made by
another person”

(in a logical specification)

Environment (E)
i.e., expected voter

behavior

Safe Environmental Envelopes of Discrete Systems 15

choose
mode

confirm
mode

fire
beam finished

e, enter, x, up

enter
b, enter,

up

enter, up

up, x, e enter, up

enter, up

e, x

up

enter

up

Fig. 8: Visual robustness comparison
between the two Therac machines.
Both machines are robust against gray
transitions, but only the Therac-20 is
robust against green transitions.

x x x
beam ready

up, enter up, x, e enter

x, e enter

up beam
Read

y

b

block

rotate

Fig. 9: Software fix that eliminates the
race condition in the Therac-25.

booth
empty

enter
pass-
word

select
candi-
date

confirm
candi-
date

v.enter pass

select

votecfm

v.exit

leave
booth

vote for
candi-
date

back back

(a) Normative environment for the voting
machine.

booth
empty

enter
pass-
word

select
candi-
date

confirm
candi-
date

v.enter pass

select

votecfm

v.exit

leave
booth

vote for
candi-
date

v.enter

v.exit

cfm

pass

back back

(b) The voting machine’s robustness is identical
with respect to Pall and Pcfm.

Fig. 10: Models for the voting machine example. In the figures above, the prefix “v”
represents actions by the voter.
ready” message until the turntable rotates into place, as shown in Fig. 9. Finally, we use
our tool to evaluate the robustness of the fix. The tool reports that the fixed Therac-25
design is strictly more robust than the original, and equally robust to the Therac-20.

6.3 Voting

Background In this section, we consider a case study of an electronic voting machine,
introduced in [42]. In this case study, we model the voting machine, a voter, and
a corrupt election official who attempts to “flip” the voter’s choice. We define the
voting machine as the composition of a voting booth and a user interface, shown in
the Appendix in Figs. 12a and 12b respectively.

In the normative environment–shown in Fig. 10a–the voter enters the booth, enters
their password, selects a candidate, clicks the vote button, and finally confirms the
choice. Unfortunately, some voters may inadvertently skip the confirmation step and
leave the booth early. This deviation from the normative behavior presents an opportu-
nity for the election official to “flip” the intended vote: after the voter leaves the booth,
the corrupt official can enter the booth, press “back” and change the vote to their
liking. This scenario represents an actual election fraud that took place in the US [34].

Comparing properties In this case study, we will consider two safety properties,
Pall and Pcfm, both of which imply the absence of vote flipping. Pall requires that
the election official cannot at any point select, vote, or confirm a candidate. Pcfm

Deviation as an Additional Trace

Expected voter behavior (trace of E)

Possible intolerable deviation ()

Security
Violation!

Automata-Theoretic Definition
Transition
systems

Logical
specification

Additional traces
(i.e., behaviors)

E with additional
behaviors

Key idea
Given M & E as state
machines, we can
compute deviations
(i.e., &) as a
measure of robustness

Robust-by-Design Systems
Specification

What does it mean for our
system to be robust?

Robustification
How do we improve

its robustness?

Analysis
How robust is
our system?

Standard Verification Problem

Verification
Tool

Environ-
ment (E)

System
(M)

Property
(P)

Yes, satisfied!

No (counter-
example)

Given M, E, P, does the system
satisfy the property?

Robustness Analysis

Robustness
Analyzer

Environ-
ment (E)

System
(M)

Property
(P)

Tolerable
deviations

Intolerable
deviations

Robustness Analysis
Given M, E, P, how robust is the system ()?
What are deviations that it cannot tolerate ()?

Robustness Analysis

Robustness
Analyzer

Environ-
ment (E)

System
(M)

Property
(P)

Tolerable
deviations

Intolerable
deviations

Technical challenges:
1. Computing the set of all deviations efficiently
2. Representing Δ concisely for comprehension

Example: Computing Deviations in Voter Behavior

Safe Environmental Envelopes of Discrete Systems 15

choose
mode

confirm
mode

fire
beam finished

e, enter, x, up

enter
b, enter,

up

enter, up

up, x, e enter, up

enter, up

e, x

up

enter

up

Fig. 8: Visual robustness comparison
between the two Therac machines.
Both machines are robust against gray
transitions, but only the Therac-20 is
robust against green transitions.

x x x
beam ready

up, enter up, x, e enter

x, e enter

up beam
Read

y

b

block

rotate

Fig. 9: Software fix that eliminates the
race condition in the Therac-25.

booth
empty

enter
pass-
word

select
candi-
date

confirm
candi-
date

v.enter pass

select

votecfm

v.exit

leave
booth

vote for
candi-
date

back back

(a) Normative environment for the voting
machine.

booth
empty

enter
pass-
word

select
candi-
date

confirm
candi-
date

v.enter pass

select

votecfm

v.exit

leave
booth

vote for
candi-
date

v.enter

v.exit

cfm

pass

back back

(b) The voting machine’s robustness is identical
with respect to Pall and Pcfm.

Fig. 10: Models for the voting machine example. In the figures above, the prefix “v”
represents actions by the voter.
ready” message until the turntable rotates into place, as shown in Fig. 9. Finally, we use
our tool to evaluate the robustness of the fix. The tool reports that the fixed Therac-25
design is strictly more robust than the original, and equally robust to the Therac-20.

6.3 Voting

Background In this section, we consider a case study of an electronic voting machine,
introduced in [42]. In this case study, we model the voting machine, a voter, and
a corrupt election official who attempts to “flip” the voter’s choice. We define the
voting machine as the composition of a voting booth and a user interface, shown in
the Appendix in Figs. 12a and 12b respectively.

In the normative environment–shown in Fig. 10a–the voter enters the booth, enters
their password, selects a candidate, clicks the vote button, and finally confirms the
choice. Unfortunately, some voters may inadvertently skip the confirmation step and
leave the booth early. This deviation from the normative behavior presents an opportu-
nity for the election official to “flip” the intended vote: after the voter leaves the booth,
the corrupt official can enter the booth, press “back” and change the vote to their
liking. This scenario represents an actual election fraud that took place in the US [34].

Comparing properties In this case study, we will consider two safety properties,
Pall and Pcfm, both of which imply the absence of vote flipping. Pall requires that
the election official cannot at any point select, vote, or confirm a candidate. Pcfm

Environment (E): Assumed voter behavior

Example: Tolerable Deviations (Δ)

Safe Environmental Envelopes of Discrete Systems 15

choose
mode

confirm
mode

fire
beam finished

e, enter, x, up

enter
b, enter,

up

enter, up

up, x, e enter, up

enter, up

e, x

up

enter

up

Fig. 8: Visual robustness comparison
between the two Therac machines.
Both machines are robust against gray
transitions, but only the Therac-20 is
robust against green transitions.

x x x
beam ready

up, enter up, x, e enter

x, e enter

up beam
Read

y

b

block

rotate

Fig. 9: Software fix that eliminates the
race condition in the Therac-25.

booth
empty

enter
pass-
word

select
candi-
date

confirm
candi-
date

v.enter pass

select

votecfm

v.exit

leave
booth

vote for
candi-
date

back back

(a) Normative environment for the voting
machine.

booth
empty

enter
pass-
word

select
candi-
date

confirm
candi-
date

v.enter pass

select

votecfm

v.exit

leave
booth

vote for
candi-
date

v.enter

v.exit

cfm

pass

back back

(b) The voting machine’s robustness is identical
with respect to Pall and Pcfm.

Fig. 10: Models for the voting machine example. In the figures above, the prefix “v”
represents actions by the voter.
ready” message until the turntable rotates into place, as shown in Fig. 9. Finally, we use
our tool to evaluate the robustness of the fix. The tool reports that the fixed Therac-25
design is strictly more robust than the original, and equally robust to the Therac-20.

6.3 Voting

Background In this section, we consider a case study of an electronic voting machine,
introduced in [42]. In this case study, we model the voting machine, a voter, and
a corrupt election official who attempts to “flip” the voter’s choice. We define the
voting machine as the composition of a voting booth and a user interface, shown in
the Appendix in Figs. 12a and 12b respectively.

In the normative environment–shown in Fig. 10a–the voter enters the booth, enters
their password, selects a candidate, clicks the vote button, and finally confirms the
choice. Unfortunately, some voters may inadvertently skip the confirmation step and
leave the booth early. This deviation from the normative behavior presents an opportu-
nity for the election official to “flip” the intended vote: after the voter leaves the booth,
the corrupt official can enter the booth, press “back” and change the vote to their
liking. This scenario represents an actual election fraud that took place in the US [34].

Comparing properties In this case study, we will consider two safety properties,
Pall and Pcfm, both of which imply the absence of vote flipping. Pall requires that
the election official cannot at any point select, vote, or confirm a candidate. Pcfm

Safe Environmental Envelopes of Discrete Systems 15

choose
mode

confirm
mode

fire
beam finished

e, enter, x, up

enter
b, enter,

up

enter, up

up, x, e enter, up

enter, up

e, x

up

enter

up

Fig. 8: Visual robustness comparison
between the two Therac machines.
Both machines are robust against gray
transitions, but only the Therac-20 is
robust against green transitions.

x x x
beam ready

up, enter up, x, e enter

x, e enter

up beam
Read

y

b

block

rotate

Fig. 9: Software fix that eliminates the
race condition in the Therac-25.

booth
empty

enter
pass-
word

select
candi-
date

confirm
candi-
date

v.enter pass

select

votecfm

v.exit

leave
booth

vote for
candi-
date

back back

(a) Normative environment for the voting
machine.

booth
empty

enter
pass-
word

select
candi-
date

confirm
candi-
date

v.enter pass

select

votecfm

v.exit

leave
booth

vote for
candi-
date

v.enter

v.exit

cfm

pass

back back

(b) The voting machine’s robustness is identical
with respect to Pall and Pcfm.

Fig. 10: Models for the voting machine example. In the figures above, the prefix “v”
represents actions by the voter.
ready” message until the turntable rotates into place, as shown in Fig. 9. Finally, we use
our tool to evaluate the robustness of the fix. The tool reports that the fixed Therac-25
design is strictly more robust than the original, and equally robust to the Therac-20.

6.3 Voting

Background In this section, we consider a case study of an electronic voting machine,
introduced in [42]. In this case study, we model the voting machine, a voter, and
a corrupt election official who attempts to “flip” the voter’s choice. We define the
voting machine as the composition of a voting booth and a user interface, shown in
the Appendix in Figs. 12a and 12b respectively.

In the normative environment–shown in Fig. 10a–the voter enters the booth, enters
their password, selects a candidate, clicks the vote button, and finally confirms the
choice. Unfortunately, some voters may inadvertently skip the confirmation step and
leave the booth early. This deviation from the normative behavior presents an opportu-
nity for the election official to “flip” the intended vote: after the voter leaves the booth,
the corrupt official can enter the booth, press “back” and change the vote to their
liking. This scenario represents an actual election fraud that took place in the US [34].

Comparing properties In this case study, we will consider two safety properties,
Pall and Pcfm, both of which imply the absence of vote flipping. Pall requires that
the election official cannot at any point select, vote, or confirm a candidate. Pcfm

Represented as added transitions to E
System preserves its property under these deviations

Safe Environmental Envelopes of Discrete Systems 15

choose
mode

confirm
mode

fire
beam finished

e, enter, x, up

enter
b, enter,

up

enter, up

up, x, e enter, up

enter, up

e, x

up

enter

up

Fig. 8: Visual robustness comparison
between the two Therac machines.
Both machines are robust against gray
transitions, but only the Therac-20 is
robust against green transitions.

x x x
beam ready

up, enter up, x, e enter

x, e enter

up beam
Read

y

b

block

rotate

Fig. 9: Software fix that eliminates the
race condition in the Therac-25.

booth
empty

enter
pass-
word

select
candi-
date

confirm
candi-
date

v.enter pass

select

votecfm

v.exit

leave
booth

vote for
candi-
date

back back

(a) Normative environment for the voting
machine.

booth
empty

enter
pass-
word

select
candi-
date

confirm
candi-
date

v.enter pass

select

votecfm

v.exit

leave
booth

vote for
candi-
date

v.enter

v.exit

cfm

pass

back back

(b) The voting machine’s robustness is identical
with respect to Pall and Pcfm.

Fig. 10: Models for the voting machine example. In the figures above, the prefix “v”
represents actions by the voter.
ready” message until the turntable rotates into place, as shown in Fig. 9. Finally, we use
our tool to evaluate the robustness of the fix. The tool reports that the fixed Therac-25
design is strictly more robust than the original, and equally robust to the Therac-20.

6.3 Voting

Background In this section, we consider a case study of an electronic voting machine,
introduced in [42]. In this case study, we model the voting machine, a voter, and
a corrupt election official who attempts to “flip” the voter’s choice. We define the
voting machine as the composition of a voting booth and a user interface, shown in
the Appendix in Figs. 12a and 12b respectively.

In the normative environment–shown in Fig. 10a–the voter enters the booth, enters
their password, selects a candidate, clicks the vote button, and finally confirms the
choice. Unfortunately, some voters may inadvertently skip the confirmation step and
leave the booth early. This deviation from the normative behavior presents an opportu-
nity for the election official to “flip” the intended vote: after the voter leaves the booth,
the corrupt official can enter the booth, press “back” and change the vote to their
liking. This scenario represents an actual election fraud that took place in the US [34].

Comparing properties In this case study, we will consider two safety properties,
Pall and Pcfm, both of which imply the absence of vote flipping. Pall requires that
the election official cannot at any point select, vote, or confirm a candidate. Pcfm

Example: Intolerable Deviations ()

v.exit

System may violate its property under these deviations!

v.exit

Analysis Process

More details in our paper!
A behavioral notion of robustness for software systems.

Zhang, Garlan, and Kang. ESEC/FSE 2020.

Comparing Designs w.r.t. Robustness

Robustness
Analyzer

Environ-
ment (E)

Design A
(MA)

Property
(P)

Design B
(MB)

Robustness Comparison:
Given two alternative designs, is one more
robust than the other (and if so, under what
deviations)?

Robust-by-Design Systems
Specification

What does it mean for our
system to be robust?

Robustification
How do we improve

its robustness?

Analysis
How robust is
our system?

Intolerable
deviations

Robustification

|=
<latexit sha1_base64="VKTfOAavN7olTffYOQDxns+rS1w=">AAACGXicdVBLSwMxGMzWV62vVY9egkXwIEvWtlZvRS8eK9gHtEvJZtM2NPsgyQpl6d/w4l/x4kERj3ry35jddkFFBwLDzHzJl3EjzqRC6NMoLC2vrK4V10sbm1vbO+buXluGsSC0RUIeiq6LJeUsoC3FFKfdSFDsu5x23MlV6nfuqJAsDG7VNKKOj0cBGzKClZYGJkr62SU9MXKdBFn16kWtgk6QhTKkxD6r1iqzvh96lMvZwCznKZinYJ6C9kIpgwWaA/O974Uk9mmgCMdS9mwUKSfBQjHC6azUjyWNMJngEe1pGmCfSifJlprBI614cBgKfQIFM/X7RIJ9Kae+q5M+VmP520vFv7xerIbnTsKCKFY0IPOHhjGHKoRpTdBjghLFp5pgIpjeFZIxFpgoXWZJl5D/FP5P2qeWjSz7plpuXC7qKIIDcAiOgQ3qoAGuQRO0AAH34BE8gxfjwXgyXo23ebRgLGb2wQ8YH1+v+5z5</latexit><latexit sha1_base64="VKTfOAavN7olTffYOQDxns+rS1w=">AAACGXicdVBLSwMxGMzWV62vVY9egkXwIEvWtlZvRS8eK9gHtEvJZtM2NPsgyQpl6d/w4l/x4kERj3ry35jddkFFBwLDzHzJl3EjzqRC6NMoLC2vrK4V10sbm1vbO+buXluGsSC0RUIeiq6LJeUsoC3FFKfdSFDsu5x23MlV6nfuqJAsDG7VNKKOj0cBGzKClZYGJkr62SU9MXKdBFn16kWtgk6QhTKkxD6r1iqzvh96lMvZwCznKZinYJ6C9kIpgwWaA/O974Uk9mmgCMdS9mwUKSfBQjHC6azUjyWNMJngEe1pGmCfSifJlprBI614cBgKfQIFM/X7RIJ9Kae+q5M+VmP520vFv7xerIbnTsKCKFY0IPOHhjGHKoRpTdBjghLFp5pgIpjeFZIxFpgoXWZJl5D/FP5P2qeWjSz7plpuXC7qKIIDcAiOgQ3qoAGuQRO0AAH34BE8gxfjwXgyXo23ebRgLGb2wQ8YH1+v+5z5</latexit><latexit sha1_base64="VKTfOAavN7olTffYOQDxns+rS1w=">AAACGXicdVBLSwMxGMzWV62vVY9egkXwIEvWtlZvRS8eK9gHtEvJZtM2NPsgyQpl6d/w4l/x4kERj3ry35jddkFFBwLDzHzJl3EjzqRC6NMoLC2vrK4V10sbm1vbO+buXluGsSC0RUIeiq6LJeUsoC3FFKfdSFDsu5x23MlV6nfuqJAsDG7VNKKOj0cBGzKClZYGJkr62SU9MXKdBFn16kWtgk6QhTKkxD6r1iqzvh96lMvZwCznKZinYJ6C9kIpgwWaA/O974Uk9mmgCMdS9mwUKSfBQjHC6azUjyWNMJngEe1pGmCfSifJlprBI614cBgKfQIFM/X7RIJ9Kae+q5M+VmP520vFv7xerIbnTsKCKFY0IPOHhjGHKoRpTdBjghLFp5pgIpjeFZIxFpgoXWZJl5D/FP5P2qeWjSz7plpuXC7qKIIDcAiOgQ3qoAGuQRO0AAH34BE8gxfjwXgyXo23ebRgLGb2wQ8YH1+v+5z5</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="7IyxuhEFG95Hdk7mxqBD97d2ZfM=">AAACDnicbZDLSgMxGIX/qbdaq1a3bgaL4EJKxrZWd4IblxXsBWaGksmkbWjmQpIRyjCv4cZXceNCEZfufBszbQVtPRD4OCeXP8eLOZMKoS+jsLa+sblV3C7tlHf39isH5a6MEkFoh0Q8En0PS8pZSDuKKU77saA48DjteZObPO89UCFZFN6raUzdAI9CNmQEK20NKih1ZpfYYuS5Kaq1GlfNOjpDNTRTDtZFo1nPnCDyKZfZoFL9Cc1VsBZQhYXag8qn40ckCWioCMdS2haKlZtioRjhNCs5iaQxJhM8orbGEAdUuulsqMw80Y5vDiOhV6jMmfv7RIoDKaeBp3cGWI3lcpab/2V2ooaXbsrCOFE0JPOHhgk3VWTmNZk+E5QoPtWAiWB6VpOMscBE6TJLugRr+cur0D2vWahm3SEowhEcwylY0IJruIU2dIDAIzzDK7wZT8aL8T6vq2AsejuEPzI+vgGx25tG</latexit><latexit sha1_base64="oiUPQGmRw3dgPsA2dTOGcce9nFM=">AAACDnicdVDLSgMxFL1TX7VWrW7dBIvgQoaMtlZ3ghuXFewD2qFkMmkbmnmQZIQyzG+48VfcuFDEpTv/xnTagooeCBzOObm5OV4suNIYf1qFldW19Y3iZmmrvL2zW9krt1WUSMpaNBKR7HpEMcFD1tJcC9aNJSOBJ1jHm1zP/M49k4pH4Z2exswNyCjkQ06JNtKggtN+PqQnR56bYrtRu6yf4RNs4xwz4pzX6mdZP4h8JlQ2qFSXKbRMoWUKOQulCgs0B5WPvh/RJGChpoIo1XNwrN2USM2pYFmpnygWEzohI9YzNCQBU26aL5WhI6P4aBhJc0KNcvX7jZQESk0DzyQDosfqtzcT//J6iR5euCkP40SzkM4fGiYC6QjNakI+l4xqMTWEUMnNroiOiSRUmzJLpoTlT9H/pH1qO9h2bjEU4QAO4RgcaMAV3EATWkDhAZ7gBV6tR+vZepvXVbAWve3DD1jvX/Q1m3U=</latexit><latexit sha1_base64="Ct2ur3LkSdOvZrj/2UGQ41qDI3U=">AAACGXicdVBLSwMxGMzWV62vqkcvwSJ4kCVrW6u3ohePFewDtkvJptk2NPsgyQpl2b/hxb/ixYMiHvXkvzHbbkFFBwLDzHzJl3EjzqRC6NMoLC2vrK4V10sbm1vbO+XdvY4MY0Fom4Q8FD0XS8pZQNuKKU57kaDYdzntupOrzO/eUSFZGNyqaUQdH48C5jGClZYGZZT0Z5fYYuQ6CTIbtYt6FZ0gE82QEeusVq+mfT8cUi7TQbmySMFFCi5S0MqVCsjRGpTf+8OQxD4NFOFYSttCkXISLBQjnKalfixphMkEj6itaYB9Kp1ktlQKj7QyhF4o9AkUnKnfJxLsSzn1XZ30sRrL314m/uXZsfLOnYQFUaxoQOYPeTGHKoRZTXDIBCWKTzXBRDC9KyRjLDBRusySLmHxU/g/6ZyaFjKtG1RpXuZ1FMEBOATHwAIN0ATXoAXagIB78AiewYvxYDwZr8bbPFow8pl98APGxxeuu5z1</latexit><latexit sha1_base64="VKTfOAavN7olTffYOQDxns+rS1w=">AAACGXicdVBLSwMxGMzWV62vVY9egkXwIEvWtlZvRS8eK9gHtEvJZtM2NPsgyQpl6d/w4l/x4kERj3ry35jddkFFBwLDzHzJl3EjzqRC6NMoLC2vrK4V10sbm1vbO+buXluGsSC0RUIeiq6LJeUsoC3FFKfdSFDsu5x23MlV6nfuqJAsDG7VNKKOj0cBGzKClZYGJkr62SU9MXKdBFn16kWtgk6QhTKkxD6r1iqzvh96lMvZwCznKZinYJ6C9kIpgwWaA/O974Uk9mmgCMdS9mwUKSfBQjHC6azUjyWNMJngEe1pGmCfSifJlprBI614cBgKfQIFM/X7RIJ9Kae+q5M+VmP520vFv7xerIbnTsKCKFY0IPOHhjGHKoRpTdBjghLFp5pgIpjeFZIxFpgoXWZJl5D/FP5P2qeWjSz7plpuXC7qKIIDcAiOgQ3qoAGuQRO0AAH34BE8gxfjwXgyXo23ebRgLGb2wQ8YH1+v+5z5</latexit><latexit sha1_base64="VKTfOAavN7olTffYOQDxns+rS1w=">AAACGXicdVBLSwMxGMzWV62vVY9egkXwIEvWtlZvRS8eK9gHtEvJZtM2NPsgyQpl6d/w4l/x4kERj3ry35jddkFFBwLDzHzJl3EjzqRC6NMoLC2vrK4V10sbm1vbO+buXluGsSC0RUIeiq6LJeUsoC3FFKfdSFDsu5x23MlV6nfuqJAsDG7VNKKOj0cBGzKClZYGJkr62SU9MXKdBFn16kWtgk6QhTKkxD6r1iqzvh96lMvZwCznKZinYJ6C9kIpgwWaA/O974Uk9mmgCMdS9mwUKSfBQjHC6azUjyWNMJngEe1pGmCfSifJlprBI614cBgKfQIFM/X7RIJ9Kae+q5M+VmP520vFv7xerIbnTsKCKFY0IPOHhjGHKoRpTdBjghLFp5pgIpjeFZIxFpgoXWZJl5D/FP5P2qeWjSz7plpuXC7qKIIDcAiOgQ3qoAGuQRO0AAH34BE8gxfjwXgyXo23ebRgLGb2wQ8YH1+v+5z5</latexit><latexit sha1_base64="VKTfOAavN7olTffYOQDxns+rS1w=">AAACGXicdVBLSwMxGMzWV62vVY9egkXwIEvWtlZvRS8eK9gHtEvJZtM2NPsgyQpl6d/w4l/x4kERj3ry35jddkFFBwLDzHzJl3EjzqRC6NMoLC2vrK4V10sbm1vbO+buXluGsSC0RUIeiq6LJeUsoC3FFKfdSFDsu5x23MlV6nfuqJAsDG7VNKKOj0cBGzKClZYGJkr62SU9MXKdBFn16kWtgk6QhTKkxD6r1iqzvh96lMvZwCznKZinYJ6C9kIpgwWaA/O974Uk9mmgCMdS9mwUKSfBQjHC6azUjyWNMJngEe1pGmCfSifJlprBI614cBgKfQIFM/X7RIJ9Kae+q5M+VmP520vFv7xerIbnTsKCKFY0IPOHhjGHKoRpTdBjghLFp5pgIpjeFZIxFpgoXWZJl5D/FP5P2qeWjSz7plpuXC7qKIIDcAiOgQ3qoAGuQRO0AAH34BE8gxfjwXgyXo23ebRgLGb2wQ8YH1+v+5z5</latexit><latexit sha1_base64="VKTfOAavN7olTffYOQDxns+rS1w=">AAACGXicdVBLSwMxGMzWV62vVY9egkXwIEvWtlZvRS8eK9gHtEvJZtM2NPsgyQpl6d/w4l/x4kERj3ry35jddkFFBwLDzHzJl3EjzqRC6NMoLC2vrK4V10sbm1vbO+buXluGsSC0RUIeiq6LJeUsoC3FFKfdSFDsu5x23MlV6nfuqJAsDG7VNKKOj0cBGzKClZYGJkr62SU9MXKdBFn16kWtgk6QhTKkxD6r1iqzvh96lMvZwCznKZinYJ6C9kIpgwWaA/O974Uk9mmgCMdS9mwUKSfBQjHC6azUjyWNMJngEe1pGmCfSifJlprBI614cBgKfQIFM/X7RIJ9Kae+q5M+VmP520vFv7xerIbnTsKCKFY0IPOHhjGHKoRpTdBjghLFp5pgIpjeFZIxFpgoXWZJl5D/FP5P2qeWjSz7plpuXC7qKIIDcAiOgQ3qoAGuQRO0AAH34BE8gxfjwXgyXo23ebRgLGb2wQ8YH1+v+5z5</latexit><latexit sha1_base64="VKTfOAavN7olTffYOQDxns+rS1w=">AAACGXicdVBLSwMxGMzWV62vVY9egkXwIEvWtlZvRS8eK9gHtEvJZtM2NPsgyQpl6d/w4l/x4kERj3ry35jddkFFBwLDzHzJl3EjzqRC6NMoLC2vrK4V10sbm1vbO+buXluGsSC0RUIeiq6LJeUsoC3FFKfdSFDsu5x23MlV6nfuqJAsDG7VNKKOj0cBGzKClZYGJkr62SU9MXKdBFn16kWtgk6QhTKkxD6r1iqzvh96lMvZwCznKZinYJ6C9kIpgwWaA/O974Uk9mmgCMdS9mwUKSfBQjHC6azUjyWNMJngEe1pGmCfSifJlprBI614cBgKfQIFM/X7RIJ9Kae+q5M+VmP520vFv7xerIbnTsKCKFY0IPOHhjGHKoRpTdBjghLFp5pgIpjeFZIxFpgoXWZJl5D/FP5P2qeWjSz7plpuXC7qKIIDcAiOgQ3qoAGuQRO0AAH34BE8gxfjwXgyXo23ebRgLGb2wQ8YH1+v+5z5</latexit><latexit sha1_base64="VKTfOAavN7olTffYOQDxns+rS1w=">AAACGXicdVBLSwMxGMzWV62vVY9egkXwIEvWtlZvRS8eK9gHtEvJZtM2NPsgyQpl6d/w4l/x4kERj3ry35jddkFFBwLDzHzJl3EjzqRC6NMoLC2vrK4V10sbm1vbO+buXluGsSC0RUIeiq6LJeUsoC3FFKfdSFDsu5x23MlV6nfuqJAsDG7VNKKOj0cBGzKClZYGJkr62SU9MXKdBFn16kWtgk6QhTKkxD6r1iqzvh96lMvZwCznKZinYJ6C9kIpgwWaA/O974Uk9mmgCMdS9mwUKSfBQjHC6azUjyWNMJngEe1pGmCfSifJlprBI614cBgKfQIFM/X7RIJ9Kae+q5M+VmP520vFv7xerIbnTsKCKFY0IPOHhjGHKoRpTdBjghLFp5pgIpjeFZIxFpgoXWZJl5D/FP5P2qeWjSz7plpuXC7qKIIDcAiOgQ3qoAGuQRO0AAH34BE8gxfjwXgyXo23ebRgLGb2wQ8YH1+v+5z5</latexit>

Can we generate suggestions for enhancing the
original design to tolerate additional deviations?

Robustification

Robustify

M 0
<latexit sha1_base64="/4Ss1Zj2cpo5PPYy4Qogo48u7Nw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbRU0lE0GPRixehiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3Uz91hMqzWP5aMYJ+hEdSB5yRo2VHu5Oe+WKW3VnIMvEy0kFctR75a9uP2ZphNIwQbXueG5i/Iwqw5nASambakwoG9EBdiyVNELtZ7NLJ+TEKn0SxsqWNGSm/p7IaKT1OApsZ0TNUC96U/E/r5Oa8MrPuExSg5LNF4WpICYm07dJnytkRowtoUxxeythQ6ooMzackg3BW3x5mTTPq55b9e4vKrXrPI4iHMExnIEHl1CDW6hDAxiE8Ayv8OaMnBfn3fmYtxacfOYQ/sD5/AEFaY0C</latexit><latexit sha1_base64="/4Ss1Zj2cpo5PPYy4Qogo48u7Nw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbRU0lE0GPRixehiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3Uz91hMqzWP5aMYJ+hEdSB5yRo2VHu5Oe+WKW3VnIMvEy0kFctR75a9uP2ZphNIwQbXueG5i/Iwqw5nASambakwoG9EBdiyVNELtZ7NLJ+TEKn0SxsqWNGSm/p7IaKT1OApsZ0TNUC96U/E/r5Oa8MrPuExSg5LNF4WpICYm07dJnytkRowtoUxxeythQ6ooMzackg3BW3x5mTTPq55b9e4vKrXrPI4iHMExnIEHl1CDW6hDAxiE8Ayv8OaMnBfn3fmYtxacfOYQ/sD5/AEFaY0C</latexit><latexit sha1_base64="/4Ss1Zj2cpo5PPYy4Qogo48u7Nw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbRU0lE0GPRixehiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3Uz91hMqzWP5aMYJ+hEdSB5yRo2VHu5Oe+WKW3VnIMvEy0kFctR75a9uP2ZphNIwQbXueG5i/Iwqw5nASambakwoG9EBdiyVNELtZ7NLJ+TEKn0SxsqWNGSm/p7IaKT1OApsZ0TNUC96U/E/r5Oa8MrPuExSg5LNF4WpICYm07dJnytkRowtoUxxeythQ6ooMzackg3BW3x5mTTPq55b9e4vKrXrPI4iHMExnIEHl1CDW6hDAxiE8Ayv8OaMnBfn3fmYtxacfOYQ/sD5/AEFaY0C</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="MyJWptbQuPyvaeoGL9GKmcYX/08=">AAAB3nicbZBLSwMxFIXv1FetVatbN8EiuiozbnQpuHEjVLEPaIeSSe+0oZnMkNwRSuk/cONCEX+WO/+N6WOhrQcCH+ck5N4TZUpa8v1vr7CxubW9U9wt7ZX3Dw4rR+WmTXMjsCFSlZp2xC0qqbFBkhS2M4M8iRS2otHtLG89o7Ey1U80zjBM+EDLWApOznq8P+9Vqn7Nn4utQ7CEKixV71W+uv1U5AlqEopb2wn8jMIJNySFwmmpm1vMuBjxAXYcap6gDSfzSafszDl9FqfGHU1s7v5+MeGJteMkcjcTTkO7ms3M/7JOTvF1OJE6ywm1WHwU54pRymZrs740KEiNHXBhpJuViSE3XJArp+RKCFZXXofmZS3wa8GDD0U4gVO4gACu4AbuoA4NEBDDC7zBuzfyXr2PRV0Fb9nbMfyR9/kD8KCLrg==</latexit><latexit sha1_base64="MyJWptbQuPyvaeoGL9GKmcYX/08=">AAAB3nicbZBLSwMxFIXv1FetVatbN8EiuiozbnQpuHEjVLEPaIeSSe+0oZnMkNwRSuk/cONCEX+WO/+N6WOhrQcCH+ck5N4TZUpa8v1vr7CxubW9U9wt7ZX3Dw4rR+WmTXMjsCFSlZp2xC0qqbFBkhS2M4M8iRS2otHtLG89o7Ey1U80zjBM+EDLWApOznq8P+9Vqn7Nn4utQ7CEKixV71W+uv1U5AlqEopb2wn8jMIJNySFwmmpm1vMuBjxAXYcap6gDSfzSafszDl9FqfGHU1s7v5+MeGJteMkcjcTTkO7ms3M/7JOTvF1OJE6ywm1WHwU54pRymZrs740KEiNHXBhpJuViSE3XJArp+RKCFZXXofmZS3wa8GDD0U4gVO4gACu4AbuoA4NEBDDC7zBuzfyXr2PRV0Fb9nbMfyR9/kD8KCLrg==</latexit><latexit sha1_base64="jdAlcl3kA8LznHSd5phgpumzgng=">AAAB6XicbVA9SwNBEJ2LXzF+RS1tFoNoFe5sYhm0sRGimA9IjrC32UuW7O0du3NCOPIPbCwUsfUf2flv3CRXaOKDgcd7M8zMCxIpDLrut1NYW9/Y3Cpul3Z29/YPyodHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+Gbmt5+4NiJWjzhJuB/RoRKhYBSt9HB33i9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6ZScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uwys/EypJkSu2WBSmkmBMZm+TgdCcoZxYQpkW9lbCRlRThjackg3BW355lbQuq55b9e7dSv06j6MIJ3AKF+BBDepwCw1oAoMQnuEV3pyx8+K8Ox+L1oKTzxzDHzifPwQpjP4=</latexit><latexit sha1_base64="/4Ss1Zj2cpo5PPYy4Qogo48u7Nw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbRU0lE0GPRixehiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3Uz91hMqzWP5aMYJ+hEdSB5yRo2VHu5Oe+WKW3VnIMvEy0kFctR75a9uP2ZphNIwQbXueG5i/Iwqw5nASambakwoG9EBdiyVNELtZ7NLJ+TEKn0SxsqWNGSm/p7IaKT1OApsZ0TNUC96U/E/r5Oa8MrPuExSg5LNF4WpICYm07dJnytkRowtoUxxeythQ6ooMzackg3BW3x5mTTPq55b9e4vKrXrPI4iHMExnIEHl1CDW6hDAxiE8Ayv8OaMnBfn3fmYtxacfOYQ/sD5/AEFaY0C</latexit><latexit sha1_base64="/4Ss1Zj2cpo5PPYy4Qogo48u7Nw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbRU0lE0GPRixehiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3Uz91hMqzWP5aMYJ+hEdSB5yRo2VHu5Oe+WKW3VnIMvEy0kFctR75a9uP2ZphNIwQbXueG5i/Iwqw5nASambakwoG9EBdiyVNELtZ7NLJ+TEKn0SxsqWNGSm/p7IaKT1OApsZ0TNUC96U/E/r5Oa8MrPuExSg5LNF4WpICYm07dJnytkRowtoUxxeythQ6ooMzackg3BW3x5mTTPq55b9e4vKrXrPI4iHMExnIEHl1CDW6hDAxiE8Ayv8OaMnBfn3fmYtxacfOYQ/sD5/AEFaY0C</latexit><latexit sha1_base64="/4Ss1Zj2cpo5PPYy4Qogo48u7Nw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbRU0lE0GPRixehiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3Uz91hMqzWP5aMYJ+hEdSB5yRo2VHu5Oe+WKW3VnIMvEy0kFctR75a9uP2ZphNIwQbXueG5i/Iwqw5nASambakwoG9EBdiyVNELtZ7NLJ+TEKn0SxsqWNGSm/p7IaKT1OApsZ0TNUC96U/E/r5Oa8MrPuExSg5LNF4WpICYm07dJnytkRowtoUxxeythQ6ooMzackg3BW3x5mTTPq55b9e4vKrXrPI4iHMExnIEHl1CDW6hDAxiE8Ayv8OaMnBfn3fmYtxacfOYQ/sD5/AEFaY0C</latexit><latexit sha1_base64="/4Ss1Zj2cpo5PPYy4Qogo48u7Nw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbRU0lE0GPRixehiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3Uz91hMqzWP5aMYJ+hEdSB5yRo2VHu5Oe+WKW3VnIMvEy0kFctR75a9uP2ZphNIwQbXueG5i/Iwqw5nASambakwoG9EBdiyVNELtZ7NLJ+TEKn0SxsqWNGSm/p7IaKT1OApsZ0TNUC96U/E/r5Oa8MrPuExSg5LNF4WpICYm07dJnytkRowtoUxxeythQ6ooMzackg3BW3x5mTTPq55b9e4vKrXrPI4iHMExnIEHl1CDW6hDAxiE8Ayv8OaMnBfn3fmYtxacfOYQ/sD5/AEFaY0C</latexit><latexit sha1_base64="/4Ss1Zj2cpo5PPYy4Qogo48u7Nw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbRU0lE0GPRixehiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3Uz91hMqzWP5aMYJ+hEdSB5yRo2VHu5Oe+WKW3VnIMvEy0kFctR75a9uP2ZphNIwQbXueG5i/Iwqw5nASambakwoG9EBdiyVNELtZ7NLJ+TEKn0SxsqWNGSm/p7IaKT1OApsZ0TNUC96U/E/r5Oa8MrPuExSg5LNF4WpICYm07dJnytkRowtoUxxeythQ6ooMzackg3BW3x5mTTPq55b9e4vKrXrPI4iHMExnIEHl1CDW6hDAxiE8Ayv8OaMnBfn3fmYtxacfOYQ/sD5/AEFaY0C</latexit><latexit sha1_base64="/4Ss1Zj2cpo5PPYy4Qogo48u7Nw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbRU0lE0GPRixehiv2ANpTNdtIu3WzC7kYoof/AiwdFvPqPvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3Uz91hMqzWP5aMYJ+hEdSB5yRo2VHu5Oe+WKW3VnIMvEy0kFctR75a9uP2ZphNIwQbXueG5i/Iwqw5nASambakwoG9EBdiyVNELtZ7NLJ+TEKn0SxsqWNGSm/p7IaKT1OApsZ0TNUC96U/E/r5Oa8MrPuExSg5LNF4WpICYm07dJnytkRowtoUxxeythQ6ooMzackg3BW3x5mTTPq55b9e4vKrXrPI4iHMExnIEHl1CDW6hDAxiE8Ayv8OaMnBfn3fmYtxacfOYQ/sD5/AEFaY0C</latexit>

Robustification

Robustification
Tool

Environ-
ment (E)

System
(M)

Deviations
()

Technical challenges:
1. Searching a large space of candidate solutions
2. Trade-offs between permissiveness vs. complexity

Property
(P)

Redesign
candidates (M’)

Robustification as Supervisory Control Synthesis

Candidate Solutions

IV. ROBUSTIFICATION PROBLEMS

A. Basic Robustification Problem

Let us first introduce the concepts of a deviation model and
the augmentation operator �. A deviation model describes
how the environment may deviate from its original behavior,
in terms of additional transitions, states, or events:

Definition 4.1: Given an LTS T = hS,↵T,R, s0i and a
deviation model � = hS�,↵�, R�i, where S ✓ S� , ↵T ✓
↵�, and R� ✓ S� ⇥ ↵� ⇥ S� , the augmentation operator �
augments T by adding states and transitions to it, i.e., T�� =
hS�,↵�, R [R�, s0i, and beh(T) ✓ beh(T � �).

For example, in Figure 1b, to model the deviation from
the expected voter behavior, the original environment model
is augmented with an additional transition over a new event,
omit confirm 2 ↵� \ ↵T , from state s4 to s5.

One might also consider deviations that involve removing
behaviors from the environment (i.e., remove transitions or
states). In this paper, we focus on adding behaviors only, as
we believe that it already captures a large and interesting class
of deviations where the environment exhibits behaviors beyond
those captured in its original model (e.g., security attacks,
human errors, etc., [8]). A deviation model that integrates both
adding and removing behaviors is part of our future work.

Then, the task of robustifying a design is defined as follows:
Definition 4.2 (Robustification): Given system M , envi-

ronment E, a deviation model �, and property P such that
M ||E |= P , the goal of robustification, Rb(M,E, �, P), is to
find an LTS M 0 such that for E0 = E � �, M 0||E0 |= P .

Property P can be a combination of safety and progress
properties. A safety property defines the unsafe behavior
that should be avoided. However, it is possible to have an
overly restrictive M 0 that satisfies the safety property, but does
nothing “meaningful”. Recall the voting example in Section II;
we could disable all confirm events, but this solution would
also prevent voters from being able to confirm their votes.
A progress property can be specified to avoid such “useless”
solutions by requiring that confirm can eventually occur.

B. Quality Metrics for Robustified Designs

In general, there may be a large number of possible solutions
(i.e., M 0) to the above problem, but some of them may
be considered more desirable than others. We consider two
desirable qualities of a robustified design: (1) the redesign
should retain as much of the important functionality from the
original design as possible, and (2) the cost of modifying M
to M 0 should be small. Let us further elaborate on these two:

1) Common Behavior: To define the first quality, we intro-
duce the notion of preferred behavior. A preferred behavior
D is an execution trace and represents an operational scenario
that the developer wishes for machine T to contain2; i.e.,
D 2 beh(T � ↵D). Then, maximizing the common behavior
between the original design M and the new design M 0 can

2We denote this as D |= T , based on the interpretation of |= as trace
inclusion, where ↵D refers to the events in trace D.

(a) Redesign by disabling back.

(b) Redesign by observing additional events eo.{enter,
exit} and controlling confirm as needed.

Fig. 2: Alternative ways to robustify the voting machine.

be formulated as maximizing the number of D’s such that
D |= M ||E and D |= M 0||E0. Formally:

Definition 4.3 (Preferred Behaviors): Given a set of pre-
ferred behaviors D = {D1, D2, . . . , Dn}, we state D |= T
for some LTS T if and only if

^

Di2D
Di |= T .

Moreover, the developer may associate each scenario Di

with a different importance value. Then, we can quantitatively
measure the amount of common behavior achieved by M 0 in
terms of the total importance value of the subset of preferred
behaviors D0 ✓ D that is retained by M 0||E0.

2) Cost of Changes: The second type of quality that we
introduce is the cost of changes between the original and new
design. One way to measure the cost would be in terms of
syntactic differences between M and M 0, e.g., the number
of changes to states and transitions. However, these syntactic-
based changes in LTS do not necessarily reflect the actual cost
of redesign effort.

Instead of syntactic changes to an LTS, our intuition is that
the cost of redesign can be better approximated by the set of
environment and system events that are observed or controlled
by the system for the purpose of robustification. Intuitively,
to make the system more robust, one may need to place an
additional sensor to observe a part of the environment (e.g.,
add an ID scanner to observe {v, eo}.enter, {v, eo}.exit) or
modify an existing actuator to disable a particular event under
certain situations (e.g., make the confirm button toggleable).

More precisely, the developer can designate a pair of event
sets, A = (Ac, Ao), where Ac,Ao ✓ ↵E [↵M , that can be
controllable and observable, respectively, for the purpose of
robustification. Furthermore, each event in A can be associated
with a cost measure to reflect the effort of implementing an
actuator or a sensor to control or observe (respectively) that
event in the real world. This, in turn, allows us to quantitatively
measure the total cost of changes as the sum of the individual
costs of the events in A that are used to robustify the system.

4

Redesign #1
Disables “back” action
Simple, but not permissive
Does not allow voter to modify
selection

IV. ROBUSTIFICATION PROBLEMS

A. Basic Robustification Problem

Let us first introduce the concepts of a deviation model and
the augmentation operator �. A deviation model describes
how the environment may deviate from its original behavior,
in terms of additional transitions, states, or events:

Definition 4.1: Given an LTS T = hS,↵T,R, s0i and a
deviation model � = hS�,↵�, R�i, where S ✓ S� , ↵T ✓
↵�, and R� ✓ S� ⇥ ↵� ⇥ S� , the augmentation operator �
augments T by adding states and transitions to it, i.e., T�� =
hS�,↵�, R [R�, s0i, and beh(T) ✓ beh(T � �).

For example, in Figure 1b, to model the deviation from
the expected voter behavior, the original environment model
is augmented with an additional transition over a new event,
omit confirm 2 ↵� \ ↵T , from state s4 to s5.

One might also consider deviations that involve removing
behaviors from the environment (i.e., remove transitions or
states). In this paper, we focus on adding behaviors only, as
we believe that it already captures a large and interesting class
of deviations where the environment exhibits behaviors beyond
those captured in its original model (e.g., security attacks,
human errors, etc., [8]). A deviation model that integrates both
adding and removing behaviors is part of our future work.

Then, the task of robustifying a design is defined as follows:
Definition 4.2 (Robustification): Given system M , envi-

ronment E, a deviation model �, and property P such that
M ||E |= P , the goal of robustification, Rb(M,E, �, P), is to
find an LTS M 0 such that for E0 = E � �, M 0||E0 |= P .

Property P can be a combination of safety and progress
properties. A safety property defines the unsafe behavior
that should be avoided. However, it is possible to have an
overly restrictive M 0 that satisfies the safety property, but does
nothing “meaningful”. Recall the voting example in Section II;
we could disable all confirm events, but this solution would
also prevent voters from being able to confirm their votes.
A progress property can be specified to avoid such “useless”
solutions by requiring that confirm can eventually occur.

B. Quality Metrics for Robustified Designs

In general, there may be a large number of possible solutions
(i.e., M 0) to the above problem, but some of them may
be considered more desirable than others. We consider two
desirable qualities of a robustified design: (1) the redesign
should retain as much of the important functionality from the
original design as possible, and (2) the cost of modifying M
to M 0 should be small. Let us further elaborate on these two:

1) Common Behavior: To define the first quality, we intro-
duce the notion of preferred behavior. A preferred behavior
D is an execution trace and represents an operational scenario
that the developer wishes for machine T to contain2; i.e.,
D 2 beh(T � ↵D). Then, maximizing the common behavior
between the original design M and the new design M 0 can

2We denote this as D |= T , based on the interpretation of |= as trace
inclusion, where ↵D refers to the events in trace D.

(a) Redesign by disabling back.

(b) Redesign by observing additional events eo.{enter,
exit} and controlling confirm as needed.

Fig. 2: Alternative ways to robustify the voting machine.

be formulated as maximizing the number of D’s such that
D |= M ||E and D |= M 0||E0. Formally:

Definition 4.3 (Preferred Behaviors): Given a set of pre-
ferred behaviors D = {D1, D2, . . . , Dn}, we state D |= T
for some LTS T if and only if

^

Di2D
Di |= T .

Moreover, the developer may associate each scenario Di

with a different importance value. Then, we can quantitatively
measure the amount of common behavior achieved by M 0 in
terms of the total importance value of the subset of preferred
behaviors D0 ✓ D that is retained by M 0||E0.

2) Cost of Changes: The second type of quality that we
introduce is the cost of changes between the original and new
design. One way to measure the cost would be in terms of
syntactic differences between M and M 0, e.g., the number
of changes to states and transitions. However, these syntactic-
based changes in LTS do not necessarily reflect the actual cost
of redesign effort.

Instead of syntactic changes to an LTS, our intuition is that
the cost of redesign can be better approximated by the set of
environment and system events that are observed or controlled
by the system for the purpose of robustification. Intuitively,
to make the system more robust, one may need to place an
additional sensor to observe a part of the environment (e.g.,
add an ID scanner to observe {v, eo}.enter, {v, eo}.exit) or
modify an existing actuator to disable a particular event under
certain situations (e.g., make the confirm button toggleable).

More precisely, the developer can designate a pair of event
sets, A = (Ac, Ao), where Ac,Ao ✓ ↵E [↵M , that can be
controllable and observable, respectively, for the purpose of
robustification. Furthermore, each event in A can be associated
with a cost measure to reflect the effort of implementing an
actuator or a sensor to control or observe (respectively) that
event in the real world. This, in turn, allows us to quantitatively
measure the total cost of changes as the sum of the individual
costs of the events in A that are used to robustify the system.

4

Redesign #2
Disables confirm while the official is in
the booth
More permissive: Allows vote change
But more complex: Requires keeping
track of booth occupant

Optimal Robustification

Trade-offs between these dimensions!
Generate multiple possible Pareto-optimal solutions

Robustification Process

More details in our paper!
Robustification of Behavioral Designs against

Environmental Deviations. Zhang et al. ICSE 2023.

Case Studies

Oyster Card protocolOAuth authorization
protocols

Medical device interfaces
(radiation therapy,
infusion pumps)

Largest model size: ~19k states
Robustness analysis: < 2.0 seconds
Robustification: ~8 minutes

Takeaway

Robustness: What potential deviations can my system tolerate
& achieve a desired security goal?

With robustness as a first-class property of systems, we can:
-> Reason about the impact of deviations on security
-> Compare alternative designs w.r.t. robustness
-> Design systems to achieve a desired level of robustness

Try our tool!

https://github.com/cmu-soda/Fortis

