
Excerpt from an as yet untitled work in progress. Draft of August 2007.

Chapter 1

Introduction

To be deemed trustworthy, a computer system should

• exhibit all of the functionality users expect,

• not exhibit any unexpected functionality, and

• be accompanied by some compelling basis to believe that to be so,

despite failures of system components, attacks, operator errors, and the in-
evitable design and implementation flaws found in software. Thus, computer

security, which focuses on resisting attacks and is the subject of this text, con-
cerns just one of the factors that undermine computer system trustworthiness.
It is a fascinating intellectual discipline, a source of challenging engineering
problems, and an area of increasing practical importance.

Security breaches are growing in frequency, sophistication, and consequence.1

This growth is likely driven by our increasing dependence on computing systems—
as individuals and as nations—which makes these systems attractive targets for
malfeasants who design and launch attacks to bring about intended adverse re-
sults. Analogous incentives do not exist for the other factors that undermine
trustworthiness: system component failures are caused by natural events (e.g.,
earthquakes, thunderstorms, and errant alpha particles striking computer chips)
whose rates are beyond mortal control; operator errors are correlated with train-
ing, competence, and user-interface; and design and implementation errors are
related to the size and complexity of system relative to developer expertise.

Beyond Byzantium. Some might argue that implementing Byzantine fault-

tolerance should suffice for resisting attacks because, by definition, it involves
tolerating hardware and software faults whose manifestations range from benign
to arbitrary and malicious behavior. This reasoning oversimplifies:

1There is no authoritative data on successful attacks and their impact. Some victims are
unable to reveal data about attacks, since it undermines public trust; others have incentives
to overstate the costs and consequences. Anecdotal accounts, however, suggest that alarm
about the trends is not misplaced.

Copyright 2007. Fred B. Schneider. All rights reserved

2 CHAPTER 1. INTRODUCTION

• Byzantine fault-tolerance methods almost exclusively focus on ensuring
that correct system outputs are produced in a timely manner. Other im-
portant security properties, such as confidentiality and providing evidence
to convince third parties about the provenance of system outputs, are
typically ignored.

• Byzantine fault-tolerance methods invariably employ some form of repli-
cation. Replication is antithetical to confidentiality, because having more
copies brings attackers more opportunities for compromise. Furthermore,
even when confidentiaility of the replicated state is not a concern, crypto-
graphic keys might still have to be stored and kept confidential at replicas.
For example, such keys are needed if irrefutable evidence about the prove-
nance of outputs is desired.

• Byzantine fault-tolerance methods assume the failure of one replica is
unlikely to effect another—a reasonable assumption because physically-
separated components connected only by narrow bandwidth channels do
tend to fail independently. However, an attack that compromises a single
replica, if repeated at others, would likely compromise them as well. We
conclude that when done in a straightforward way, replication improves
fault-tolerance but does not enhance a system’s tolerance to attack.

Byzantine fault-tolerance methods must be extended for building systems that
resist attacks. Computer security methods provide the basis for these exten-
sions, giving ways to build individual components that resist attack and giving
ways to reduce the chances a successful attack on one component could also be
successful at others.

1.1 Attacks, Threats, and Vulnerabilities

Attacks against a system are mounted by motivated capable adversaries, known
as threats or attackers, who attempt to violate the system’s security properties
by exploiting vulnerabilities—unintended aspects of a system’s design, imple-
mentation, or configuration. That is a rather succinct description, so we now
explore each of these elements in more detail.

Threats. Avoid the temptation to design defenses first and only afterwards
characterize the threats they resist, because it risks producing a system that
defends against the wrong adversary. The first (not last) step in building a
secure system should be to decide on the threats.

A list of threats, based on work by a U. S. Defense Science Board task force,
appears as Figure 1.1. Threats there are ordered from least to most pernicious.
Better resourced threats (in terms of funding, talent, time, or organizational
support) are generally considered the more dangerous, but attacker motivation
or passion can substitute for funding. Note that the cost of designing an at-
tack could differ substantially from the cost of launching that attack. Expertise

Copyright 2007. Fred B. Schneider. All rights reserved

1.1. ATTACKS, THREATS, AND VULNERABILITIES 3

• Incomplete, inquisitive, and unintentional blunders.

• Hackers driven by technical challenges.

• Disgruntled employees or customers seeking revenge.

• Criminals interested in personal financial gain, stealing services, or indus-
trial espionage.

• Organized crime with the intent of hiding something or financial gain.

• Organized terrorist groups attempting to influence U.S. policy by isolated
attacks.

• Foreign espionage agents seeking to exploit information for economic, po-
litical, or military purposes.

• Tactical countermeasures intended to disrupt specific weapons or com-
mand structures.

• Multifaceted tactical information warfare applied in a broad orchestrated
manner to disrupt a major military mission.

• Large oganized groups or nation-states intent on overthrowing a govern-
ment.

Figure 1.1: Taxonomy of Cybersecurity Threats

and/or access to secret information required to devise an attack might be expen-
sive, but once an attack is created, it can be packaged and distributed (perhaps
using the web) in ways that allow virtually anyone to launch it.

Not included in the taxonomy of Figure 1.1 are insiders who unwittingly
assist in attacking a system. The term social engineering is used for attacks
that employ human interaction and trickery to cause some outcome an attacker
seeks. An adversary, for example, might exploit people’s natural willingness to
take action that helps solve what seems to be a pressing problem: The attacker
poses as a new technical manager, telephones the victim, relates a fictitious
story about urgent system problems, and requests the insider’s password so an
account can be “reset”; the insider divulges the password to be helpful, and
the attacker now has a way onto the system. One defense against social engi-
neering is educating the workforce about acceptable and unacceptable behavior,
but many find it stifling to work in an environment where co-workers are not
permitted to depart from standard operating procedures. So there is a tension
between defending against social engineering and fostering the flexibility that is
so important in running an enterprise, be it an army or a business.

How might potential threats for a given system be identified? There is, un-
fortunately, no easy answer. Knowledge about services a system renders or data

Copyright 2007. Fred B. Schneider. All rights reserved

4 CHAPTER 1. INTRODUCTION

it stores can provide some insight about threats, though. Who profits from us-
ing or abusing the service or data? Also, a new computing system probably has
some (perhaps manual) predecessor that it is replacing or augmenting; threats
to that predecessor are likely also to be threats for the new computing system.
Another rule of thumb is that higher-resourced threats are attracted by systems
associated with high-value assets. Be mindful, though, to incorporate the so-
cial, political, and economic climate when estimating the value of an asset. For
example, new fears about domestic terrorism might prompt a government to
re-evaluate and withdraw from public view documents that, though helpful to
the general population, could facilitate terrorist attacks.

Sources of Vulnerabilities. An obvious source of vulnerabilities is errors
in a system’s design or implementation. Eliminating all of these is a worthy
goal but likely an unachievable one. This is because identifying software errors
is costly in developer time, computer time, and delay to market. The cost of
finding and removing that next bug becomes prohibitive at some point.

Vulnerabilities also result from implicit assumptions made by developers,
and this is the basis for many well known attacks. One example are buffer-

overflow attacks. Here, a developer assumes that some input will always fit
into a specific-sized region of memory. In C programs, copying a value (e.g.,
a string) bigger than the destination buffer accommodates will overflow into
adjacent memory, thereby changing other parts of the program state. One form
of buffer-overflow attack causes a C routine to copy an attacker-provided input
that overflows into a return address; the subsequent return operation loads the
program counter with that attacker-provided address, which hijacks control and
transfers to whatever routine the attacker had specified. Note, the assumption
being made by the developer about input size is not only invalid but is entirely
unnecessary—a C program can (and should) check the size of an input before
copying it.

Assumptions made by developers sometimes are necessary, are explicit, and
need not be limited to coding details. Algorithms often depend on assump-
tions about timing, failure manifestations, message delivery order, and other
properties of the execution environment or system services. These assumptions
must hold for the algorithm—and any systems that use it—to work correctly,
so any means of violating such assumptions constitutes an attack. For example,
a denial of service attack could be used to increase system load, causing critical
tasks to be delayed so assumptions about timing are violated.

All else equal, systems whose correct operation is predicated on weaker sets
of assumptions exhibit fewer vulnerabilities. With fewer vulnerabilities, the
system is more resistant to attack. This defense does have a price, though.
Algorithms that depend on weaker sets of assumptions are often more expensive
and typically more complicated. Furthermore, some functionality simply cannot
even be implemented unless certain assumptions are guaranteed to hold. So
there is a limit on adopting weak-assumptions as a defense.

System configuration is another noteworthy source of vulnerabilities. Mod-

Copyright 2007. Fred B. Schneider. All rights reserved

1.2. SECURITY PROPERTIES 5

ern software systems are quite flexible, employing configuration files to cus-
tomize each installation. These files are created not by the system’s developers
but by local site administrators who are less familiar with the system and must
work from (often cryptic) documentation. Site administrators sometimes get
it wrong and expose functionality more broadly than intended, effectively dis-
abling defenses and giving users accesses that should be blocked; and sometimes
site administrators just admit defeat and deploy whatever default configuration
file accompanied the software distribution, even though historically such config-
uration files have allowed virtually unrestricted access to functionality.2 Notice,
unlike the vulnerabilities discussed above, system configuration vulnerabilities
are not under the control of software developers and, in fact, can differ from one
installation to the next.

As should now be clear, any non-trivial system is going to have vulnerabilities
of one sort or another. Fortunately, repairing or even finding all vulnerabilities is
not necessary for a software system to be considered secure. Some vulnerabilities
might not be exploitable because attacks do not exist; exploiting others might
be beyond the capabilities of your threats. Focus only on vulnerabilities that
could be exploited by your threats. Each such vulnerability must be found
and removed or else means should be deployed to limit damage possible from
attacks that exploit the vulnerability. But note that believing a vulnerability
to be unexploitable and ignoring it is risky—new attacks are developed all the
time, and vulnerabilities that are unexploitable today could become exploitable
tomorrow.

1.2 Security Properties

Systems for different tasks are typically expected to satisfy different security

policies, which prescribe what must be done and what must not be done. A
system for storing top-secret documents, for example, must prevent adversaries
from learning the contents of those documents, whereas a system for managing
bank accounts should ensure account balances change only in response to specific
events: customer deposits and withdrawals, debits for bank fees, credits for
interest payments, and so on.

Security policies legislate behavior by people, computers, executing pro-
grams, communications channels, and other system entities capable of taking
action. Having a single term to denote any such entity is convenient; the term
principal is conventionally used for this in the security literature. A principal
acts on its own or it speaks for (equivalently acts on behalf of) another prin-
cipal. For instance, a computer acts on behalf of the program it is executing;
a keyboard speaks for the person who is typing on it; a communications chan-
nel speaks for (i) the computer that outputs messages onto that channel, (ii)
the program that sends messages to that channel, as well as (iii) the user who
caused that program to be executed.

2Software producers are starting to become senstive to this problem, and increasingly
sensible defaults are being distributed with software.

Copyright 2007. Fred B. Schneider. All rights reserved

6 CHAPTER 1. INTRODUCTION

Security policies themselves are typically formulated in terms of the three
basic kinds of security properties :

Confidentiality (or secrecy). Which principals are allowed to learn
what information. []

Integrity. What changes to the system (stored information and resource
usage) and to its environment (outputs) are allowed. []

Availability. When must inputs be read or outputs produced. []

These classes are not completely independent. For example, enforcing the in-
tegrity property that output y be calculated from input x could conflict with
enforcing a confidentiality property stipulating that reading y reveals nothing
about the value of x. As a second example, observe that any confidentiality
property can be satisfied given a weak enough availability property because a
system that does nothing has no way for attackers to learn information. Clearly,
care must be taken in writing security policies to ensure the result is neither
contradictory nor trivial.

1.2.1 Confidentiality

Among the more familiar confidentiality properties are those enforced by re-
stricting which principal may read data that is stored in a file or region of
memory. Sometimes even the existence of the data might need to be kept se-
cret. Past patients at an alcoholism rehabilitation facility, for instance, might
want to keep that history confidential, which implies keeping secret the very
existence of their treatment files. So one typically finds that not only will an
operating system restrict which ordinary files each principal can read but it will
also restrict which directories each principal can read.3

Reading an object is only one way to learn information about that object.
Inference is another. Through information flow, a principal might learn the
value of one variable by reading another. The program fragment below, where
variables pub and priv each store a single bit, illustrates.

pub := 0; if priv = 1 then pub := 1

There are no assignments from priv to pub yet reading pub after execution of
this fragment reveals the value of priv , so information flows from priv to pub.

Another way to learn information is by measuring some aspect of system
behavior, called a covert channel, known to be correlated with information an
attacker seeks. For example, a program might intensively access a system disk
only after reading a certain value from a confidential variable and not after
reading other values; an attacker’s program concurrently accessing that disk

3A directory contains metadata (including the file name) for a set of files. The directory
itself must be read in order to access any file in that set.

Copyright 2007. Fred B. Schneider. All rights reserved

1.2. SECURITY PROPERTIES 7

could then infer something about the value of that confidential variable by
attempting I/O to the disk and observing the delay.

Finally, information can be learned by making inferences from statistical
calculations. Suppose an attacker seeks to learn the value of an attribute that
some database stores about an individual. A query to compute an average or
other statistic on that attribute over all individuals seems as though it should
preserve confidentiality of information associated with any single individual.
Yet, this need not be the case. For example, a query to compute the average
salary over a sub-population of size 1 yields the salary of the sole individual
in that sub-population. And creating that sub-population of size 1 is surpris-
ingly easy—gender, date of birth, and zip code (well known attributes for an
individual) together uniquely identify 99% of the people in Cambridge, Mas-
sachusetts. Moreover, even when we cannot create a sub-population of size 1,
by re-submitting a query to different overlapping projections of the database, an
attacker can extract an attribute value corresponding to the unique individual in
their intersection by analyzing results returned for the various sub-populations.

Where Privacy Fits. We distinguish between confidentiality and privacy.4

Confidentiality is a security property; privacy is a right.

Privacy. The right of an individual to determine what personal informa-
tion is communicated to which others, and when. []

A key insight for understanding privacy is to appreciate that whether a piece of
information is considered personal by the subject often depends on context—
who is learning the information and their need to know it. For example, many
would regard their clothes size to be personal information; they would consider
it a privacy violation if this information becomes known to colleagues but have
no hesitation about revealing it to sales clerks in clothing stores. People also
tend to be more concerned about privacy if they believe the entity receiving
their personal information is not trustworthy, because they then have reason to
fear abuse or loss of control over the subsequent spread of that information.

For computing systems, privacy often is concerned with so-called personally

identifiable information (PII), which encompasses information that potentially
can be used to identify, contact, or locate a person. Examples of PII include a
person’s name, social security number, telephone number, address, and so on.

Keeping information confidential is not the only way to respect a person’s
privacy. Personal information can be disclosed without violating a subject’s
privacy (i) by giving that subject notice of the possible disclosure when that
information is first collected or (ii) by obtaining the subject’s consent prior
to revealing that information. Thus, supporting the right of privacy requires
more than mechanisms for implementing confidentiality properties. It requires
a means to notify subjects and to obtain their consent; both of which likely will
involve machinery outside the scope of a computing system.

4Some regard confidentiality and privacy as synonyms. Our purposes in this text are better
served by having distinct meanings for these two terms.

Copyright 2007. Fred B. Schneider. All rights reserved

8 CHAPTER 1. INTRODUCTION

1.2.2 Integrity

Integrity properties proscribe specified “bad things” from occurring during ex-
ecution, where a “bad thing” is something that, at least in theory, could be
observed—a finite sequence of instructions, a state, or a history of states.5 In-
tegrity properties thus include many of the usual notions of program correctness,
such as correctly computing outputs from inputs, absence of program-exceptions
during execution, and mutual exclusion of critical sections. Limits placed on the
use of real or virtual resources during execution also are integrity properties,
since exceeding those limits is a “bad thing” that can be attributed to some
finite execution that required the resource.

Integrity properties can be used to convey proscriptions about data and how
it is changed, enabling a data-centric view of security. So, an integrity property
could specify that changes to a data item be made by running a specific routine,
that updates preserve a global consistency constraint, or that specified checks be
made before allowing an update. To enforce such properties, operating systems
typically provide control over write and execute access to files and memory
regions.

Write and/or execute access are not sufficient for enforcing all integrity prop-
erties, though. We might want to specify, for example, that high-integrity data
not be contaminated by low-integrity data—a restriction concerning informa-
tion flow and not (necessarily) access control. This kind of integrity property
is useful in defending against corruption that might result when content from
different sources is combined. This integrity property is also useful for defending
against certain classes of attack: to defend against malicious code downloaded
from the Internet, we label as low integrity anything obtained from the Internet,
and we label as high integrity all local content; to defend against buffer-overflow
attacks, we label as low integrity any inputs provided by a user, and label as
high integrity the program counter, return address locations, function pointers,
and other containers for code addresses. We then prevent attackers from gaining
control of the system by enforcing an integrity policy that prevents low integrity
content from affecting high integrity resources.

1.2.3 Availability

Availability properties prescribe that a “good thing” happens during execution.
For this definition, one essential characteristic of a “good thing” is that it need
not have finite duration; it therefore could be any finite or infinite sequences of
instructions or states. The other essential characteristic of the “good thing” in
an availability property is that of being required, in contrast to a safety prop-
erty’s “bad thing” which is being prohibited. Availability properties include

5Confidentiality properties are decidedly different from integrity properties, but an in-
tegrity property might imply a confidentiality property. An example is the integrity property
stipulating that some principal not be permitted to perform a read operation on a file F . The
“bad thing” is execution of the read. If executing a read is the only way to learn the contents
of F then this integrity property implies the confidentiality property that the contents of F

be kept secret.

Copyright 2007. Fred B. Schneider. All rights reserved

1.3. ASSURANCE MATTERS 9

aspects of program correctness, such as execution terminates (useful for a sys-
tem call), execution does not terminate (useful for an operating system), and
requests are processed in a fair manner (useful for a server). The latter two ex-
amples illustrate a “good thing” that cannot be associated with an identifiable
point in execution. They also illustrate that violation of an availability property
sometimes defines a safety property.

Once the poor cousin to confidentiality and integrity, availability proper-
ties are growing in importance as networked computing systems have become
widespread:

• With the advent of the web, business is increasingly conducted over net-
works. Availability properties are what ensure a business can communi-
cate with its customers and partners.

• Critical infrastructures, like electric power and gas distribution, air and
rail transportation, as well as banking and financial markets, all are in-
creasingly being monitored and controlled using networked systems. Avail-
ability properties enable the control functions to work.

• The military is starting to embrace network-centric warfare, a doctrine
involving networked systems to link commanders and troops with surveil-
lance and weapons platforms. Availability properties enable situational
awareness and facilitate the timely deployment of both defensive and of-
fensive assets.

In all of these applications, compromises to availability have significant financial
or life-threatening, if not tactical and strategic, consequences. Availability can
no longer receive short shrift when building a secure system.

1.3 Assurance Matters

An assurance argument provides evidence that a system will behave as intended.
Ideally, that evidence will be compelling. But the work required to completely
analyze systems of even moderate size can be prohibitive, so we often must settle
for assurance arguments that guarantee weaker properties of system behavior,
that concern only a portion of the system, or that merely increase our confidence
that the system will behave as intended rather than guaranteeing it.

We might base an assurance argument on the system itself, the process used
to create the system, or the personnel who participated in that process. Argu-
ments based on process or personnel are typically less work to construct but are
less convincing. That your developers have passed a certification examination
or that the development process employed was like one successfully used before
involves little, if any, knowledge about the system of concern. And an argument
that largely ignores how or why a system works cannot compel belief that the
system’s behavior will be as intended. So we should prefer assurance arguments
that depend on system details.

Copyright 2007. Fred B. Schneider. All rights reserved

10 CHAPTER 1. INTRODUCTION

A broad spectrum of approaches to assurance arguments have been devel-
oped, ranging from formal methods to software analyzers to testing. The ap-
proaches differ in what kinds of properties they address and how convincing is
the evidence they provide. They also differ in the amount, distribution, and
kinds of effort each involves; some require significant initial human effort before
yielding evidence to support any increase in confidence, while others yield useful
results from the very start. One thing they all share, however, is that the cost
of increased assurance grows with system size, and establishing high levels of
assurance for systems of even moderate size is today far beyond our capabilities.

Finally, it is worth recalling that we desire systems that cannot be subverted
by specified threats, which is not quite the same as resisting specified attacks.
Nobody knows how to derive all attacks a threat might initiate, and it is unlikely
such deductions could ever be automated. Thus, while an assurance argument
might provide evidence that the system will defend against certain attacks,
there remains a gap between what our analyses reveal and the statement about
threats we seek.

What is Trusted?

Whether a component behaves as intended is determined, in part, by whether
components on which it depends behave as intended—guarantees about the
one component involve assumptions about others. We appropriate terms trust

and trusted in order to make explicit such assumptions, saying if a component
C depends on C ′ then C trusts C ′ or equivalently C ′ is trusted by C. For
example, we might say that a word processor trusts the file system, or we might
be more precise and say exactly what file system functionality is trusted by the
word processor. Should the file system be trusted only to preserve the integrity
of files it stores, then we imply the word processor’s confidentiality properties
are not compromised if the file system reveals file contents to attackers (perhaps
because the word processor encrypts files before storing them on the file system).

When a component is trusted, two kinds of assumptions are introduced. The
first is that operations provided by that component’s interfaces behave as ex-
pected. The second are a set of concomitant assumptions about the component’s
internals, including (i) any advertised confidentiality and integrity properties on
the state and (ii) proscriptions about whether and when the component invokes
operations elsewhere in the system. That is, stipulate that some component is
trusted and you are stipulating that certain attacks on the component will not
succeed and that other attacks (anywhere in the system) can have only limited
impact on the operation of this component.

Being trusted is not the same as being trustworthy. Trustworthy components
by definition function as intended, whereas trusted components need not behave
as assumed—trust can be misplaced. Since attackers rightly see assumptions
as being potential vulnerabilities, misplaced trust creates vulnerabilities. In
particular, if a component C trusts C ′, then a vulnerability in C ′ is potentially
also a vulnerability for C, and success in attacking C ′ might well be a way to
compromise C. So we should prefer components that are trustworthy to those

Copyright 2007. Fred B. Schneider. All rights reserved

1.4. ENFORCEMENT PRINCIPLES 11

that are (merely) trusted.
It is easier to have confidence in the correct operation of artifacts we can

understand, and it is easier to understand artifacts that are smaller and sim-
pler. This leads to the following often stated but too often ignored principle for
building trustworthy components.

Principle: Economy of Mechanism. Prefer mechanisms that are sim-
pler and smaller, hence easier to understand, easier to get right, and easier
to have confidence that they are right. []

Economy of Mechanism implies that a mechanism involving fewer control paths
should be preferred, because humans are capable of enumerating and analyz-
ing only small numbers of execution trajectories. It also implies that general-
purpose mechanisms should be preferred to collections of special-purpose mech-
anisms, again due to the mental energy required to understand one mechanism
versus many.

Trusted Computing Base. In any non-trivial system, some aspect of the
system’s behavior is going to be considered more critical. It is often a small set
of security properties but can be virtually any property. The set of mechanisms
(along with any associated configuration files) required to support that critical
functionality is known as the trusted computing base (TCB).

We should endeavor to ensure that the TCB is trustworthy. The thinking
behind Economy of Mechanism applies here: Keep the TCB simple and small,
so that (i) it will be easier to understand and (ii) the cost of constructing an
assurance argument will not be prohibitive. This also suggests a sensible yard-
stick for comparing alternative system designs—the design having the simpler
and smaller TCB should be preferred.

1.4 Enforcement Principles

Successfully attacking a computer causes the target to execute instructions that
it shouldn’t, resulting in violation of some security property. The instructions
might come from a program provided by the attacker. Or they might be code
already at the target being invoked with unexpected inputs or in an unexpected
state.

An enforcement mechanism must either prevent that execution or recover
from its effects. To succeed at this, attackers must be unable to (i) replace or
modify the code that implements the enforcement mechanism, (ii) circumvent
the enforcement mechanism, or (iii) alter files or data structures used by the
enforcement mechanism. Finally, although any enforcement mechanism will
necessarily support only a limited space of policies efficiently, we should strive
for separation of policy and mechanism and prefer mechanisms where changing
from one policy to another within that space is easily accommodated.

To make this a bit more concrete, consider how today’s operating systems
enforce confidentiality and integrity properties on files.

Copyright 2007. Fred B. Schneider. All rights reserved

12 CHAPTER 1. INTRODUCTION

• Associated with each file is an access control list, which enumerates those
principals allowed to read the file and those principals allowed to write
that file.

• Operating system routines are the sole way to perform file I/O. A file I/O
request is rejected by the operating system unless the principal issuing
that I/O request appears on the appropriate access control list.

• Replacement, modification, and circumvention of the file I/O routines is
prevented by mechanisms that protect the operating system’s integrity;
attacker changes to access control lists is prevented by storing these lists
in files and defining suitable access control lists for those.

Notice the extent to which separation of policy and mechanism is exhibited by
this enforcement mechanism. In order to change which principals can access a
file, it suffices to change an access control list but code need not be changed.
However, some policies that might be of interest cannot be enforced with this
mechanism. These include policies where access authorization is determined by
past accesses (e.g., no principal can change a file after some principal has read
that file).

1.4.1 Defending Against Attack

The basic strategies available for protecting against attacks are few in number
and rather straightforward. We survey them in general terms here, giving details
in the later chapters that discuss specific enforcement mechanisms.

Isolation. This strategy admits a range of implementations. The extreme case
is physically isolating the system by locating it (including all its input/output
devices) inside a large metal vault, with a power feed being the only electrical
connection to the outside world.6 The vault’s metal walls form a Faraday cage,
which prevents transmission of signals (including electronic noise produced by
the computer’s circuitry, which might reveal information about a computation
in progress) from traveling into or out of the vault. Terminals and printers
located inside the vault are thus the only way to communicate with programs
running on the computer, and attackers are blocked from physically entering
the vault.

Less extreme forms of isolation are more typical and often more useful.
Rather than sequestering the computer within a vault, software is used to cre-
ate isolation by restricting communication between programs, subsystems, or
systems. The term “communication” should be interpreted here rather broadly
to mean the ability of one principal to influence execution by another. Restrict
the ability of attackers to communicate with their targets, and we block attacks

6Prior to the advent of wireless networking, computer security experts would speak of an
“air gap” as being the ultimate protection mechanism. A vault is the limit case, and this
technology is still used in highly sensitive national security applications. Such a facility in the
U.S. is sometimes known as a SCIF (Sensitive Compartmented Information Facility).

Copyright 2007. Fred B. Schneider. All rights reserved

1.4. ENFORCEMENT PRINCIPLES 13

because, by definition, an attack influences execution of its target (by causing
instructions to be executed).

We see software-implemented isolation, for example, in the following oper-
ating system abstractions:

Virtual Machines. A virtual machine behaves as if it were an isolated
computer despite other execution on the underlying hardware. A hypervi-

sor (or virtual machine manager) implements virtual machines that have
the same instruction set as the underlying hardware. With paravirtu-

alization, the hardware’s non-privileged instructions appear unaltered, so
applications needn’t be modified for execution on the virtual machine, but
privileged instructions and the memory architecture may differ, so systems
software might have to be modified. Some virtual machines implement in-
struction sets bearing no resemblance to what the underlying hardware
provides. This facilitates program portability across different hardware
platforms; software to support the given virtual machine is written for
each platform. For example, Sun’s Java programming language is defined
in terms of the Java Virtual Machine (JVM), which was designed with the
slogan “Write once, run anywhere” for Java programs in mind. []

Sandboxes. For software executed inside a sandbox, all operations on the
environment’s resources are redirected to shadow copies of those resources.
This shields the real instances of resources from the effects of attacks per-
petrated by the sandboxed software (but also from the effects of any other
execution, thereby limiting the utility of the sandboxed software). Sand-
boxing is easily implemented when instructions manipulating the environ-
ment’s resources are among those that cause traps. Web browsers and
email clients often implement sandboxing to protect the system they run
in against attacks conveyed in web pages and attachments. []

Processes. System software, known as a kernel (also called a supervisor

or nucleus), is employed to multiplex a real processor and create a set of
processes. Each process executes in its own isolated address space; kernel-
supported non-privileged instructions provide access to system services
and a set of shared resources. The shared resources reduce isolation by
providing direct and indirect means for one process to affect execution
by others. This is by design—the process abstraction is intended as a
building block for implementing larger systems, and process coordination
(the antithesis of isolation) is often necessary for an ensemble to achieve
system-wide goals. []

Virtual machines, then, are protected from being harmed by their environment,
sandboxes prevent harm to the envionment, and processes implement some of
both forms of isolation.

Weaker forms of isolation are better suited to how most of us use comput-
ers today. We run programs, like web browsers and email clients, whose sole
function is to communicate with principals not running locally. Other of the

Copyright 2007. Fred B. Schneider. All rights reserved

14 CHAPTER 1. INTRODUCTION

applications we execute are designed to communicate with each other through
a shared file system, so a task can be accomplished by dividing it into smaller
subtasks that each can be handled using a single application. And our graphi-
cal user interfaces provide operations like cut-and-paste, to facilitate transfer of
information from one program’s window to another, and provide operations like
double-clicking, to invoke programs based on selected text in another program’s
window. None of these regimes is consistent with strong isolation. Indeed, com-
puting as we know it today might have to change quite radically to embrace
strong isolation.

All we really require is just enough isolation to block communication used
for attacks. That suggests deploying mechanisms to filter channels of communi-
cation. Unfortunately, incomplete solutions are the best we can hope for here. If
a communication channel can convey a program, then our filter must determine
whether that program implements some known attack, which requires that the
filter decide the equivalence of two7 programs, an undecidable problem. Another
source of incompleteness arises because attacks will continue to be developed
after the filter has been deployed; attacks that had not been anticipated might
not be detected and blocked.

Incomplete solutions for detecting and blocking communications that con-
vey attacks are nevertheless widely used in practice. Here are two well known
examples.

Firewalls. A firewall interrupts the connection from an enclave of com-
puters to some network. The firewall is configured to pass only certain
messages, typically blocking those destined to ports associated with appli-
cations that should not be accessed from outside the enclave. For instance,
we might locate the corporate web server outside the enclave comprising
that company’s desktop computers and then configure the firewall to block
outside requests for web content (i.e., requests to port 80) from reaching
the desktop computers. The desktop computers are then no longer subject
to attacks that target the port expected to run a web server. []

Code Signing. With code signing, provenance—that is, who produced
the content—becomes a criteria for deciding whether that content is safe
to execute. System software only loads for execution content with a preap-
proved provenance. Cryptographic digital signatures are used to protect
the integrity of the content and to identify its producer, hence the name
“code signing”. Microsoft’s AuthenticodeTM for example protects Inter-
net Explorer from web pages containing malicious executable content by
allowing content downloaded from the web to be executed only if it was
produced by Microsoft or by a Microsoft-approved software producer. []

Viewed abstractly, isolation plays the same role in computer security as did
the tall, imposing perimeter walls in protecting a medieval city from marauders.

7One program is the known attack and the second program is the one found in the com-
munication.

Copyright 2007. Fred B. Schneider. All rights reserved

1.4. ENFORCEMENT PRINCIPLES 15

Add openings that are too large or too numerous, and those walls cease to be
an effective defense. Yet, having those openings facilitates activities—commerce
and other interactions with outsiders—that we might want to encourage. Note
the tension between defending the city and promoting the daily activities of its
citizens.

An analogous tension exists when isolation is used for computer security. A
firewall, for example, is less effective for isolation when it is configured to pass
more different kinds of messages to more different ports, yet there is usually
considerable pressure to do just this. For instance, B2B (business-to-business)
e-commerce creates such pressure because computers on different sides of fire-
walls must now have direct access to each other’s applications and data. As a
second example, code signing becomes less valuable as larger numbers of soft-
ware producers are approved, because chances are then increased that an ap-
proved producer will distribute code containing vulnerabilities. Yet, there will
be pressure—from code producers who want to sell products and consumers
who want to use them—for the list of approved producers to be large.

Isolation is thus best suited to situations where (i) there is little pressure
to puncture the boundaries that isolation defines and (ii) communication that
does cross those boundaries is limited and carefully prescribed. As we shall
see, protecting the integrity of enforcement mechanisms often turns out to be
exactly this kind of a situation, as does enforcing certain kinds of confidentiality
properties.

Monitoring. Because attacks (by definition) involve execution, a second means
of defense can be to monitor a set of interfaces and halt execution before any
damage is done using operations those interfaces provide. Three elements com-
prise this defense:

• a security policy, which prescribes acceptable sequences of operations from
some set of interfaces;

• a reference monitor, which is a program that is guaranteed to receive
control whenever any operation named in the policy is requested, and

• a means by which the reference monitor can block further execution that
does not comply with the policy.

By prescribing what is acceptable, the security policy implicitly defines exe-
cutions that are not acceptable; these are the attacks this defense addresses.
Note that monitoring can be used to implement isolation in settings where op-
erations are the sole way principals communicate—the monitor serves as the
filter on the communications channels. Thus, implementations for the isolation
schemes discussed above often embody forms of monitoring.

The characterization of monitoring given above leaves much about imple-
mentation unspecified. Various approaches can be employed. Policies concern-
ing the interface between the processor and memory can be enforced by installing
a reference monitor as part of the kernel trap-handler for memory-access faults;

Copyright 2007. Fred B. Schneider. All rights reserved

16 CHAPTER 1. INTRODUCTION

this allows policies that restrict memory accesses (read, write, or execute) to
be enforced. Policies involving shared hardware resources (such as the interval
timer) and shared OS abstractions (such as the file system) can be enforced by
installing a reference monitor in the kernel and having it run whenever a pro-
cess invokes the corresponding OS operation. Later chapters explore in greater
detail these and various other schemes.

Which interfaces we choose to monitor depends on what attacks we wish to
defend against. A safe, but perhaps extreme, solution is:

Principle: Complete Mediation. The reference monitor intercepts
every access to every object. []

Even if Complete Mediation is not always practical, it is generally a good start-
ing point. Analysis of the system and threats can then provide a justification for
not monitoring specific objects or operations. Were we concerned, for instance,
with attacks that violate confidentiality properties by sending information out
the network, then the obvious interfaces to monitor include those for sending
messages and any other interfaces that initiate network traffic, such as interfaces
for reading and writing from network file servers, interfaces to send email, inter-
faces to print on network-accessible printers, and if the paging device is located
across the network, then even interfaces whose operations can cause pages to
be evicted from memory.

Systems commonly use monitoring to support policies formulated in terms
of principals and privileges. The security policy specifies: (i) an assignment8 of
privileges to principals, and (ii) an enumeration of what privilege(s) a principal
must possess for each specific operation. A policy P is considered stronger

than another policy Q if P assigns some principals fewer privileges than Q does
and/or additional privileges are required by P for some operations to occur than
are required by Q. Thus, stronger policies rule out more behaviors.

By ruling out possible execution, stronger policies protect against more at-
tacks. What we should seek, then, is the strongest policy that still enables the
system to accomplish its goals. That ideal policy is characterized as follows.

Principle: Least Privilege. A principal should be only accorded the
minimum privileges it needs to accomplish its task. []

As an illustration, consider the design of a spell checker module to augment a
text editor. A correctly operating spell checker likely needs read access to the
file being accessed by the text editor, read access to the dictionary of correct
spellings, but requires access to no other files; a correctly operating text editor
needs read and write access to the user’s files, but it does not itself need access
to the dictionary.

The damage an attack causes by subverting a program depends on what
privileges that program has, just as the damage a user causes with carelessly
entered commands depends on what privileges that user has. The more privi-
leges a principal has, the more damage that principal can inflict, so ignoring the

8This assignment of privileges might be dynamic, changing as execution proceeds.

Copyright 2007. Fred B. Schneider. All rights reserved

1.4. ENFORCEMENT PRINCIPLES 17

Principle of Least Privilege is risky in a world where programs have vulnerabil-
ities and people make mistakes. As a concrete example, the UNIX super-user
is a principal that has read, write, and execute access to all files. In most
versions of UNIX, certain system programs have super-user privileges (help-
ful, for example, to the system program that delivered mail by storing it in
each user’s directory); also, operators and UNIX system programmers log-on as
super-user to manage the system. This means that an attacker who subverted
the mail-delivery program could write (hence, delete) any file in the system, and
a systems programmer who entered a command to delete all files in the current
directory might crash the system if that command was accidentally typed while
in a working directory that stored the system’s executables.

The Principle of Least Privilege is impossible to implement if the same priv-
ilege suffices for multiple different objects or operations. We should endeavor to
avoid that.

Principle: Separation of Privilege. Different accesses should require
different privileges. []

However, putting Separation of Privilege into practice can be a nightmare. In a
computer system with separate privileges for every object and every operation,
somebody will have to decide who should be given the millions of privileges,
and every principal will have to manage the privileges it receives. Few of us
would have the patience to allocate or acquire all of those privileges manually,
and there has been remarkably little progress in creating automated support or
suitable user interfaces to help.

We might be tempted to address these practical difficulties by exploring al-
ternative representations for a principal’s privileges. If virtually every principal
is being granted a specific privilege, then why not just list the prohibited prin-
cipals rather than listing the (much larger number of) principals being granted
the privilege? In theory, both representations should be equivalent, since the
one could be computed from the other. In practice, however, these two rep-
resentations are significantly different, because people make mistakes and it is
people who currently decide what privileges are given to each principal. Con-
sider the two possible mistakes—(i) mistakenly prohibiting access by a principal
versus (ii) mistakenly granting it. By mistakenly prohibiting access, some task
that should work might not, which will lead to a complaint (and presumably
redress); by mistakenly granting access, operations that should be blocked will
run, which is unlikely to be detected and could violate a system security prop-
erty. The second kind of mistake seems far worse than the first, and that suggests
the following.

Principle: Failsafe Defaults. The presence of privileges rather than
the absence of prohibitions should be the basis for determining whether
an access is allowed to proceed. []

Recovery. Attacks whose effects are reversible could be allowed to run their
course, if a recovery mechanism were available afterwards to undo any dam-

Copyright 2007. Fred B. Schneider. All rights reserved

18 CHAPTER 1. INTRODUCTION

age. This defense is quite different from those based on blocking execution or
blocking communication—recovery embodies an optimistic outlook that allows
all execution to proceed, whereas blocking takes the more conservative stance
of prohibiting any potentially harmful execution. The two different approaches
are compatible, though, and they might well be employed in concert.

The effects of only some attacks can be reversed, so recovery is not always a
feasible defense. We gain some insight into where recovery is useful by consid-
ering attacks whose effects can and cannot be reversed.

Confidentiality Violations. A secret that has been disclosed is no
longer confidential. If that secret is a statement about the world, then
its disclosure to an adversary is unlikely to be reversible. Troop strength,
the formula for Coca-Cola, or an individual’s medical records are examples
of such secrets.

Disclosure of some secrets, such as passwords and cryptographic keys,
can be remediated by choosing replacements. By selecting a new login
password immediately after the old one becomes known to an adversary,
attackers are limited to a short window during which they can access the
system and cause damage. But replacing an encryption key that becomes
known is less effective—although messages encrypted under the new key
cannot be decrypted by attackers, messages that were encrypted under
the old key, intercepted by the attacker, and saved, can still be read by
the adversary. []

Integrity Violations. Changes to internal system state are usually re-
versible, so recovery can be used to defend against attacks whose sole
effect is to change that state. Special system support is typically required
to perform such recovery. Transactions9 are an ideal packaging for state
changes that might have to be reversed, but transactions are not well
suited for structuring all applications and can have an unacceptable im-
pact on performance.

An alternative to transactions is simply to take frequent backups of the
system state. This imposes virtually no restrictions on application struc-
ture, but creating and storing frequent backups can have a non-trivial
impact on performance. Also, the backups must be available and not
subject to corruption by attackers. We might prevent such corruption by
storing backups off-line and by not using any software on the compro-
mised system when restoring state from a backup (so contamination from
the prior attack is not perpetuated even if the attacker had managed to
modify the compiler, loader, or other system software to produce tainted
outputs despite having uncorrupted inputs). Backups are particularly ef-

9Recall, by definition, a transaction might abort and, therefore, the run-time must sup-
port an undo operation to reverse the transaction’s state changes. To enable recovery from
state changes caused by attacks, such undo functionality would have to be extended so that
previously committed transactions could also be aborted.

Copyright 2007. Fred B. Schneider. All rights reserved

1.4. ENFORCEMENT PRINCIPLES 19

fective for defending against attacks that install software for facilitating
subsequent attacker access.

Attacks that produce outputs affecting the physical environment can be
hard to reverse. Erroneously issuing a check, launching a missile, or re-
routing an airplane to a new destination are examples of outputs that
cannot be reversed, although one can imagine compensating actions for
each: a stop-payment could be issued on the check, the missile could be
ordered to self-destruct, or the airplane’s course could be re-adjusted back
to the old destination. Compensating actions don’t always exist, though,
and might be prohibatively expense when they do. []

Availability Violations. For a system not involved in sensing or control-
ling the physical environment, recovery from availability violations could
be feasible: evict the attacker and resume normal processing.10 Note that
buffered inputs will queue until normal processing resumes, which means
higher than usual loads until the backlog has been processed. []

Defense in Depth. No single mechanism is likely to resist all attacks. So the
prudent course is that system security depend on a collection of complementary
mechanisms rather than trusting a single mechanism. By complementary, we
mean that mechanisms in the collection

• exhibit independence, so any attack that compromises one mechanism
would be unlikely to compromise the others, and

• overlap, so that attackers can succeed only by compromising multiple
mechanisms in the collection.

Both of these requirements are easier to state than to satisfy, because they
quantify over all attacks, including attacks not yet known. Even so, a carefully
considered defense in depth is, in practice, apt to be stronger than using a
single mechanism in isolation, if the above requirements are approximated with
sufficient fidelity.

One example of defense in depth is seen when you withdraw cash at an
automated teller machine (ATM) that checks for both a valid bank card (a token
presumably held only by the rightful card holder) and a PIN (a 4 digit Personal
Identification Number presumably known only to the rightful card holder). The
bank considers it unlikely that somebody who steals your bank card will deduce
your PIN (which depends on your having selected a non-obvious PIN and not
writing that PIN on the card itself), so the two different checks probably satisfy
the independence requirement. The overlap requirement is addressed by the
bank requiring both checks be satisfied before allowing the cash withdrawal.

As another example, we might employ both a firewall and a sandbox to
defend against attacks conveyed in email attachments. The firewall modifies

10In a system for controlling a reactor or an airplane, delaying the delivery of the outputs
could lead to a catastrophic failure, because physics won’t wait.

Copyright 2007. Fred B. Schneider. All rights reserved

20 CHAPTER 1. INTRODUCTION

packets it handles, deleting email attachments having types that, when opened,
execute; the sandbox blocks executing attachments from reading files, writing
files, and invoking certain programs (e.g., to initiate communications over the In-
ternet). Arguably, the two mechanisms satisfy the independence requirement—
one mechanism modifies packets while the other blocks executions; the overlap
requirement is satisfied because each attachment passes first through the firewall
and only then is executed in the sandbox.

Independence of the constituent mechanisms is the hardest part of imple-
menting defense in depth. Empirical evidence suggests that diverse mechanisms
are less likely to share vulnerabilities but, lacking a concrete definition of di-
versity, that observation is less useful than it might at first seem. In theory,
two mechanisms having any point of similarity cannot be considered diverse,
because an attack that exploits vulnerabilities present in a point of similarity
could compromise both mechanisms. This is illustrated by bank card example
above, where both mechanisms have the card holder in common and there is
a trivial attack that subverts both mechanisms: abduct the card holder and
use coercion to get the bank card and learn the PIN. In practice, mechanisms
deployed in the same system will necessarily have points of similarity, although
not all these similarities will have exploitable vulnerabilities. So, lacking a sci-
entific basis for deciding which similarities could be exploitable, experience and
judgement must be the guide for implementing defense in depth.

1.4.2 Secrecy of Design

There are good reasons to keep information about defenses secret, and there
are good reasons not to. Consequently, the utility of what is variously known
as secrecy of design or security by obscurity11 has been a topic of considerable
debate.

Pro: Proponents argue that withholding details about design or implementation
makes attacking a system that much more difficult. Anything that makes
the attacker’s job harder constitutes a useful defense, so secrecy of design
adds one more layer to a defense in depth.

Con: Opponents point out that attackers will learn design and implementation
secrets sooner or later. Making system details public increases the chances
that system vulnerabilities will be identified, so they can be repaired.

Each position involves some implicit assumptions. By exposing these assump-
tion, we can better understand circumstances where secrecy of design makes
sense.

The first of the implicit assumptions concerns the feasibility of actually keep-
ing design and implementation details secret. In some environments, secrets
don’t stay that way for long; in others, disclosure of secrets is unlikely. At-
tempting to employ secrey of design is pointless for environments where keeping
secrets is infeasible. Here are two common cases.

11The term “security by obscurity” is used primarily by those who oppose secrecy of design.

Copyright 2007. Fred B. Schneider. All rights reserved

1.4. ENFORCEMENT PRINCIPLES 21

• Military security clearances have proven quite effective in preventing the
spread of classified information. Loyalty to one’s country plus threats of
prison are powerful inducements for keeping classified information secret.
Adoption of “need to know” as the criterion for deciding who is granted
initial access to classified information also helps limit its spread.

• In non-military environments, loyalty (if it exists) is probably to an em-
ployer; possible punishments for disclosures are limited to fines and, in
practice, rarely imposed. Employers turn a blind eye to their employees
discussing (secret) system details with professional peer groups, believ-
ing more is gained from the exchange than lost by the disclosures. Also,
employees do change employment, taking with them design and imple-
mentation secrets while at the same time changing their loyalty.

Implicit in the view held by proponents of secrecy of design is also an as-
sumption that design and implementation details are expensive to extract from
artifacts available to an attacker. Again, the veracity of the assumption depends
on the environment. Reverse-engineering an executable is neither difficult nor
expensive given today’s software tools. (There are even tools to make sense of
executables produced from source code that has first been obfuscated by apply-
ing semantics-preserving transformations.) Yet there are cases where attackers
are unlikely to have access to a system executable or systems that run them.
One example is a system running on a well secured server that only can be
reached over a network; another example is control software embedded in a
physical device (e.g., a nuclear weapon) that itself is difficult for attackers to
obtain.

Opponents to secrecy of design assume that releasing code and documenta-
tion for public review will bring reports of vulnerabilities. However, a system
tends to attract public scrutiny only if it will be widely deployed, protect assets
of some consequence, or is claimed to embody novel security functionality. Most
systems do not satisfy any of those criteria, and they will be largely ignored by
reviewers looking to maximize the impact of their efforts. For example, open
source software is claimed to benefit from on-going review by a large devel-
oper community12 but most of these developers are looking to extend or change
the system’s functionality rather than searching through the code base for vul-
nerabilities. Perhaps more to the point, there is no hard evidence of fewer
vulnerabilities in open source software.

There is also a question about whether vulnerabilities that are discovered by
public review will be reported. Some reviewers are motivated by the publicity
their discoveries will bring, and they can be expected to report (albeit in the
press, which might mean negative publicity for a developer) vulnerabilities they
discover. Others, however, are more motivated by what can be gained from
exploiting what they discover—they will remain silent. Examples here range
from individuals seeking riches by attacking financial institutions to govern-

12This view underlies what Eric Raymond names Linus’ Law: “Given enough eyeballs, all
bugs are shallow.”

Copyright 2007. Fred B. Schneider. All rights reserved

22 CHAPTER 1. INTRODUCTION

ments stockpiling arsenals of attacks that destabilize their opponent’s critical
infrastructures.

One final assumption is implicit in the opponent view to secrecy of design.
It concerns the feasibility of creating and disseminating repairs once a vulner-
ability has been identified. Some vulnerabilities cannot be repaired by making
incremental changes to already deployed systems. Even when incremental re-
pairs are possible, some deployed systems might not be easily reached to notify
about the vulnerabilities or make those repairs. In either case, public knowl-
edge of vulnerabilities leads to an overall reduction in security by exposing to a
broader community new opportunities for attack.

Merits of Keeping Known Vulnerabilities Secret. Among the system
details that might be kept secret are the known vulnerabilities. Systems are rou-
tinely shipped with known vulnerabilities—the developers might believe these
vulnerabilities are difficult to exploit, better addressed by adding defenses to
the environment in which the system executes, or bring small risk compared
to the benefits the new system offers. And after a system has been operating
in the field, additional vulnerabilities are likely to become known, because they
are discovered by developers or others. The obvious question in connection with
secrecy of design is: Should these vulnerabilities be kept secret?

Secrecy of design proponents would argue that revealing vulnerabilities is
unwise, because it facilitates attacks. Even if patches are made available imme-
diately, these patches are probably not going to be applied to all systems right
away.13 Some systems will be performing tasks that cannot be interrupted and,
therefore, a patch cannot be applied as soon as it becomes available. In other
cases, operators are (justifiably) fearful that applying a patch could be desta-
bilizing, so they undertake a period of local off-line testing before installing
the patch in their production environments. In summary, public disclosure of
vulnerabilities here leads to increased numbers of attacks and systems compro-
mised.

Secrecy of design opponents hold that keeping vulnerabilities secret is a mis-
take. They contend that by failing to disclose the existence of vulnerabilities,
a software or service provider is now guilty of misrepresenting the system’s se-
curity. This is bad business, destroys customer confidence, and might even be
considered a fraudulent misrepresentation with legal consequences. Further-
more, keeping a vulnerability secret from the operators of a system in no way
guarantees that vulnerability will stay secret from attackers. So system owners,
the party most able to institute changes in system usage as a way to compensate
for a new exposure, are unable to take action due to ignorance about the new
vulnerability.

13The experience of Microsoft is instructive. They typically observed a sharp rise in attacks
just after (not before!) issuing a patch for Windows software. Apparently, attackers reverse-
engineer each new patch to find the vulnerability and then devise a corresponding attack for
use in compromising unpatched systems.

Copyright 2007. Fred B. Schneider. All rights reserved

1.5. REAL WORLD PHYSICAL SECURITY 23

1.5 Real World Physical Security

Although computer security is a relatively new discipline, security for phys-
ical artifacts has been studied for centuries. Concerns about confidentiality,
integrity, and availability existed long before the advent of digital computers,
as did questions about dealing with flaws in defenses and deciding how best
to manage risk. It is unwise to ignore these insights, although the differences
between physical artifacts and digital ones must be taken into account. For
example, the relative ease with which bits can be copied or transported as com-
pared with physical objects is significant when translating security lessons from
the physical world to the electronic one.

1.5.1 Security through Accountability

An attacker need find only one exploitable vulnerability, whereas the defender
must be concerned with all. That asymmetry implies the chances are good
that some attackers might well succeed in circumventing a system’s defenses.
Defenders are thus better off if the system’s defenses are not the sole reason
that threats are dissuaded from launching attacks.

To understand how this might work, consider how banks dissuade thieves
from commiting robbery. The valuables are locked in a vault, which is difficult
(but not impossible) to penetrate. There is an alarm system to alert the police
when a heist is in progress. And surveillance cameras provide images to help in
apprehending the burglars and evidence to support conviction.

The rational burglar (and admittedly not all burglars are) decides whether to
undertake a given robbery by understanding not only how much could be gained
from fencing the stolen goods and what are the chances of penetrating the vault
but also what is the probability and cost of being apprehended, convicted, and
punished. Effectiveness by the police in catching and the courts in convicting
a burglar thus creates a disincentive to committing the crime. Surveillance
cameras—not the locked vault—play the crucial role here (although aficionados
of heist flicks know that time spent circumventing alarms and breaking into a
vault increases a burglar’s chances of being caught in the act).

Turning now to computer systems, this same structure can be obtained
through Complete Mediation and three basic classes of mechanisms:14

Authorization. An authorization mechanism governs whether requested
actions are allowed to proceed. []

Authentication. An authentication mechanism associates a principal
and perhaps those it speaks for with actions or communications. []

Audit. An audit mechanism records system activity, attributing each
action to some responsible principal. []

14Authorization, Authentication, and Audit are together known as the “gold standard” for
computer security because Au is the atomic symbol for gold and each of these terms starts
with that prefix.

Copyright 2007. Fred B. Schneider. All rights reserved

24 CHAPTER 1. INTRODUCTION

The vault is an authorization mechanism, because it regulates access; the vault’s
key (or combination) is an authentication mechanism, because it identifies prin-
cipals who are permitted access; and the bank’s surveillance cameras are an
audit mechanism, because they record activity by each principal.

Note the central role that authentication plays in both authorization and
audit. Humans, computers, and channels, differ in their computational and in-
formation storage capabilities, so different authentication mechanisms are typ-
ically best for each. Authentication turns out to be a rich area to explore and
will be a recurring theme in this text.

We saw above that authorization is not the true disincentive for burglars
to undertake a robbery; it also need not be the true disincentive for attackers
attempting to subvert a computer system. Any system that supports the fol-
lowing has the information needed for apprehending attackers and convicting
them in court, hence can dissuade threats from launching attacks.

Accountability. Hold people legally responsible for actions they insti-
gate. Employ an audit mechanism to ascertain, capture, and preserve in
some irrefutable manner the association between each action undertaken
and the person who is legally responsible for causing that action. []

Accountability constitutes the ultimate deterrent, whereas authorization mech-
anisms merely increase the chances an attack will fail or the attacker will be
caught.

Supporting accountability can be tricky, though. The principal making a
request is not always the principal—or even acting on behalf of the principal—
that should be held accountable. For example, a program or a computer is a
principal that might, by design, act on behalf of many users (i.e., principals).
Which user should be held responsible for an inappropriate action by that pro-
gram or computer? Add attackers to the picture, and it becomes possible for a
compromised system to act under control of an attacker but appear to be acting
on behalf of a bona fide user. Thus, enforcing accountability is not simply a
matter of authenticating the source of request messages and employing an audit
mechanism to archive that information.

Accountability, for all its virtues, is not appropriate in all settings. A prin-
cipal’s anonymity is sometimes vital for the success of an enterprise:

• Only when each vote cast is anonymous can we be certain it reflects the
will of the voter. Anonymity protects the voter from retaliation for making
what somebody else views as the wrong choice; it also deprives the voter
of a token to justify compensation for making what somebody else thinks
is the right choice.

• Critical remarks and other unpopular communication might go unsaid if
the speaker’s identity is known so retribution would be possible. However,
anonymity here is a double-edged sword—some might be more inclined
to make irresponsible, inaccurate, or incendiary statements when their
identity cannot be known.

Copyright 2007. Fred B. Schneider. All rights reserved

1.5. REAL WORLD PHYSICAL SECURITY 25

• Accountability has a chilling effect on seeking certain information. To
show interest in particular diseases, political or social causes, and even
technologies (e.g., chem/bio warfare or home-made explosives), for exam-
ple, risks disgrace or investigation. One might be less inclined to visit a
web site hosting such content if that act could become known to govern-
ment, management, co-workers, family members, or (in the case of public
figures) the press.

• Knowledge of who is making the offer to buy some article can benefit a
seller trying to decide whether to hold out for a higher price, because if the
buyer is known to have substantial resources, then the seller might be more
inclined to continue negotiating. Similarly, knowledge of who is the seller,
which might lead to information about the seller’s circumstances, could
give an edge to buyers who might exploit a seller’s temporary liquidity
crisis.

Governments, by and large, favor accountability—it facilitates prosecuting
offenders and, by employing authentication that includes location information,
it can eliminate questions of jurisdiction.15 Business too favors a climate of
accountability, since it allows partners to be chosen based on evidence of a
history of successful interactions. However, as illustrated above, accountability
is not a panacea. So in the final analysis, one must weigh the added security
that accountability (through deterrence) provides against any adverse effects it
brings to an enterprise.

1.5.2 Risk Management

Most of us practice risk management when contemplating how to protect valu-
able articles we own from theft. We pursue risk reduction, investing in security
measures (e.g., locks and alarms) to deter burglars; we transfer risk by purchas-
ing insurance; or we do both if decreasing the expected loss16 to an acceptable
level using risk reduction alone would be too expensive.

Expected loss is proportional to the value of what is being protected and to
the hostility of the environment; it is inversely proportional to the efficacy of
any deployed risk reduction measures. This explains why a local jewelry store
likely would have stronger locks than a residence; why apartments in a big city
have doors with multiple locks and windows with steel grates, while apartments
in a relatively crime-free small towns have neither; and why insurance rates for
a residence go down after a burglar alarm is installed. It’s not just common
sense to spend more for securing items of greater value and for more hostile
environments—it’s a straightforward consequence of risk management.

15Different laws apply in different locations. For example, gambling is legal in some places
but not others. For accountability to be useful in prosecuting a crime, the jurisdiction must
be known so that correct laws can be applied and an appropriate court used for the trial.

16The expected loss from theft for an article is the product of the probability the article
will be stolen times the value of the article.

Copyright 2007. Fred B. Schneider. All rights reserved

26 CHAPTER 1. INTRODUCTION

To practice risk management, we must know the cost of implementing vari-
ous risk reduction measures, their efficacy, the value of what is being protected,
and the probabilities of incurring a loss. Most of these quantities are difficult
to determine with much precision. For example, in securing a residence against
burglary, there are costs for choosing, purchasing, and installing multiple differ-
ent locks on the doors plus a cost from the inconvenience of carrying and using
multiple keys every time you enter or exit.17 Yet despite our ignorance about
exact values for the quantities involved, we can usually use the risk manage-
ment framework to help make sensible, if not optimal, judgements about what
security is worth deploying in various circumstances.

The practice of risk management is not limited to judgements about phys-
ical security. It also can be a useful framework when contemplating computer
security. For one thing, it forces you to think in terms of expected losses, not
just the costs of losses. This means you must (i) estimate a value for the loss
incurred for violating the various confidentiality, integrity, and availability prop-
erties required by the system, and (ii) estimate a probability for each kind of
compromise given the anticipated threat. Even very rough estimates here help
avoid the temptation of deploying security that is far stronger than needed. Of
course, there are settings where virtually no risk of loss is tolerable—national
security comes to mind. Even here, though, the risk management framework
will make this obvious.

A key parameter for risk reduction is knowing the efficacy of each defense
you intend to employ. While quantitative measures for this are unlikely to be
available, it seems clear that efficacy will be correlated both with the quality of
the assurance argument and with how rich is the class of policies the defense
can enforce. A better assurance argument means the mechanism is less likely
to have vulnerabilities; a richer class of enforceable policies means that what
can be enforced is likely close to what is actually needed, reducing the chance
that an attacker can exploit the difference between what is and what needs to
be enforced. Establishing assurance is costly, as is building mechanisms that
enforce richer collections of policies. So we conclude that achieving greater
efficacy increases costs.

The cost of a defense is the cost of its design, implementation, and assurance
argument plus the cost of managing it and the inconvenience its deployment
imposes on users. Therefore, a defense is not sensible unless its cost is less than
the value of what it protects, since otherwise suffering the loses is cheaper. The
lesson to learn here is that feasible security must be simple enough to manage,
not cause too much inconvenience, and simple enough to build (so it is likely to
be right).

Exercises for Chapter 1

1.1 Cost and delay make it impractical to search each airline passenger com-
pletely prior to every flight. Instead, sampling is employed and only a subset

17Be wary of ignoring the cost of inconvenience. Although this cost is difficult to quantify,
it often dominates as risk reduction measures with ever higher efficacies are deployed.

Copyright 2007. Fred B. Schneider. All rights reserved

1.5. REAL WORLD PHYSICAL SECURITY 27

of passengers are thoroughly searched. Which of the following criteria should
be more effective at decreasing the chances that passengers will carry concealed
weapons onto flights? Justify your answer.

i. Select passengers at random for screening. Thus, babies, grandmothers,
and government officials might well be selected for search.

ii. Select for screening randomly among passengers satisfying a predefined pro-
file. For example, based on past airline hijackings, a plausible profile might
be males of a certain age and ethnicity (but feel free to propose another).

1.2 Classify each of the following as a violation of confidentiality, integrity,
availability, or of some combination (and state what that is).

(a) During the final examination, Alice copies an answer from another stu-
dent’s paper, then realizes that answer is wrong and corrects it before
submitting her paper for grading.

(b) Bob registers the domain name AddisonWesley.com and refuses to let the
publisher Addison Wesley buy or use that domain name.

(c) Carol attempts to login to Dave’s account, unsuccessfully guessing various
passwords until the operating system locks the account to prevent further
guessing (but also preventing Dave from logging in).

(d) Edward figures out a way to access any file on the University computer and
runs a program that lowers the grades of some students he saw cheating
earlier in the semester.

(e) Fran figures out a way to access any file on the University computer and
runs a program that computes and reports to her the average homework
grade of students in her security course.

(f) George uses an extension to listen-in on her brother’s telephone conver-
sation and accidentally forgets to hang-up the phone when he is done
listening.

1.3 What kind of security property is each of the following?

(a) The grade for the assigment is available only to the student who submitted
that assignment.

(b) If your course grade changed, then the professor made that change.

(c) The output is produced by the CS Department web server.

(d) Requests to the web server are not processed out of order.

(e) No run-time exception is raised during execution.

(f) User Alice may not issue read operations to file F .

Copyright 2007. Fred B. Schneider. All rights reserved

28 CHAPTER 1. INTRODUCTION

(g) The program Alice runs to issue read operations on file F runs to comple-
tion.

(h) If Alice sends a piece of email then there is no way for her to deny having
done so.

(i) The downloaded piece of music may be played at most 5 times.

(j) The memo may be forwarded to your employees but they may not forward
it any further.

1.4 Consider the following protocol for conducting an election.

1. A set of identical paper ballots is printed. Each ballot contains the
same list of candidates.

2. Each qualified voter is given a single unmarked ballot.

3. In private, the voter uses a pen to circle one name on the list and
folds the ballot in half (hiding from view the list of candidates and
the one that was selected).

4. The voter then places that marked ballot in the locked collection box.

5. After everyone has voted, the collection box is opened, the ballots
are unfolded, counted, and a winner is announced.

(a) What properties should be satisfied by any reasonable protocol for con-
ducting an election (and not just by the protocol outlined above)?

(b) Establish the necessity of each protocol step above by explaining how each
contributes to one or more of the properties you listed in part (a).

1.5 A host and guests are dining at a fancy restaurant, where they are served
by a waiter. “In vino veritas” (Plato), so the host decides to purchase a bottle
of wine to complement the meal. The protocol for purchasing that bottle in
such circumstances typically involves the following steps:

1. The host tells the waiter the name of a bottle of wine.

2. The waiter brings to the table an unopened bottle with that name
on the label.

3. In the presence of the host, the waiter breaks the seal on the bottle,
removes the cork, and pours a small amount into the host’s glass.

4. The host samples the wine in that glass.

5. If the host finds the wine is not spoiled then the host nods approval,
and the waiter pours the wine into the guests’ glasses, then fills the
host’s glass, and leaves the bottle on the table.

What properties is this protocol designed to enforce? Explain the connection
each protocol step has to these properties.

Copyright 2007. Fred B. Schneider. All rights reserved

1.5. REAL WORLD PHYSICAL SECURITY 29

1.6 A long wine list can be intimidating, but it virtually guarantees (assume
this, anyway) that the restaurant will have a suitable wine no matter what
meals a host and guests at a given table order. The host who knows little
about matching wines to food and who has a limited budget might engage in
the following protocol.

1. Only the host is given a copy of the wine list. This list contains the
price for each wine the restaurant sells.

2. The host identifies two wines that span the price range defined by
the host’s wine budget. Let’s call them Wlow and Whigh .

3. After the guests select and order their meals, the host asks the waiter
which of wines Wlow and Whigh might be most suitable for what was
ordered.

4. The waiter responds with a list of suggestions, where the waiter’s
suggestions are priced between the prices of Wlow and Whigh , and
each suggestion is also well matched to all the food that has been
ordered. (The waiter’s suggestions might or might not include wines
Wlow and Whigh .)

5. The host orders one of the wines the waiter suggested.

What properties is this protocol designed to enforce? Explain the connection
each protocol step has to these properties.

1.7 Here is the usual protocol for using a credit card to pay for dinner in a
restaurant.

1. The waiter gives the bill to the host.

2. The host looks over the bill and, if all seems correct, hands a credit
card to the waiter.

3. The waiter returns with the credit card and two copies of a credit
card charge slip. Each copy lists the amount on the bill.

4. The host looks at the charge slips, adds a gratuity (if desired) onto
one copy, and signs that charge slip. The host keeps the credit card
and the other copy of the charge slip.

Consider a different protocol:

1. The host gives a credit card to waiter.

2. The waiter returns with the bill, the credit card, and two copies of a
credit card charge slip. Each copy lists the amount on the bill.

3. The host looks at the charge slips, adds a gratuity (if desired) onto
one copy, and signs that charge slip.

4. The host keeps the credit card and the other copy of the charge slip.

Copyright 2007. Fred B. Schneider. All rights reserved

30 CHAPTER 1. INTRODUCTION

(a) The two protocols exhibit performance differences, but do they otherwise
satisfy the same properties? If they do not satisfy the same properties
then what are the differences?

(b) What assumptions about expected-case behavior underlie each protocol,
and what are the performance implications when that expected-case be-
havior does not hold?

1.8 Consider an enlightened company, where employees who have free time
may use their office computers to access the Internet for personal tasks. A
newspaper article causes management to fear that the company’s secret doc-
uments are being leaked to the press, and that prompts an audit to identify
which employees have electronic copies of secret documents. To implement that
audit, the security officer proposes that a virus be written and used to infect all
machines on the company’s intranet. That virus would behave as follows.

1. This virus periodically scans the disk of any machine it infects, lo-
cating any secret documents being stored there.

2. Whenever the virus locates a secret document, it sends email con-
taining the name of the machine and secret document to the security
officer.

Discuss whether this scheme violates employee privacy.

1.9 Suppose the virus in exercise 1.8 worked somewhat differently. Instead
of reporting all secret documents found, it simply reports the name of every
document found that is not on an approved list of publicly-released corporate
memos. Do you believe this violates employee privacy? Explain why.

1.10 Indicate, for each of the following, the extent to which user privacy is
being violated.

(a) When the user’s browser opens a web page being hosted by an Internet
portal (such as Google, MSN, or Yahoo), a pop-up appears containing an
advertisement selected based on the last web search that user made.

(b) When the user’s browser opens a web page being hosted by an Internet
portal (such as Google, MSN, or Yahoo), a pop-up appears containing an
advertisement selected based on the contents of the last email that user
read or sent.

1.11 Must confidentiaility be sacrificed to achieve accountability? Propose
a scheme whereby confidentiality is sacrificed only when a principal is being
accused of violating a rule or law.

1.12 A relation R(x, y) is defined to be reflexive iff R(x, x) always holds, sym-

metric iff whenever R(x, y) holds then so does R(y, x), and transitive if whenever
both R(x, y) and R(y, z) hold then so does R(x, z).

Copyright 2007. Fred B. Schneider. All rights reserved

1.5. REAL WORLD PHYSICAL SECURITY 31

(a) Consider relation trusts(c, c′), which holds iff component c trusts compo-
nent c′. Should we necessarily expect trusts to be reflexive, symmetric,
or transitive? Explain, giving examples to support your views.

(b) Consider the relation tw(p, p′), which holds iff principal p believes that
principal p′ is trustworthy. Should we necessarily expect tw to be reflexive,
symmetric, or transitive? Explain, giving examples to support your views.

1.13 In §1.4 attacks are equated with instruction execution:

Successfully attacking a computer causes the target to execute in-
structions that it shouldn’t, resulting in violation of some security
property.

Discuss execution that might be involved in the following kinds of attacks.

(a) Violating a confidentaility property that involves content on a disk.

(b) Violating an availability property concerning query processing for an in-
memory database.

(c) A buffer-overflow attack.

(d) Violating an integrity property that involves a downloaded piece of music
being played more times than permitted by the license agreement.

1.14 Access control lists are often used by authorization mechanisms that en-
force confidentiality and integrity of files. The access control list ACLF is stored
in the directory that contains the file F being governed by ACLF . The integrity
of that directory must be protected, and this is accomplished using an access
control list stored in yet another directory, and so on. It would seem there is
now an infinite-regress. Explain how this infinite regress might be avoided.

1.15 Consider the following exhortation:

Principal of Least Privilege. Each task should be assigned to the
principal that

i. has the least set of privileges and

ii. is capable of accomplishing the task.

[]

(a) In what sense is this an instance of the Principle of Least Privilege?

(b) In what sense are the two different? Illustrate by examples.

1.16 Compare and contrast the Principle of Least Privilege and the military’s
“Need to know” principle for allowing access to confidential information.

Copyright 2007. Fred B. Schneider. All rights reserved

32 CHAPTER 1. INTRODUCTION

1.17 A medieval castles was often situated in a large open field, and the castle
itself was surrounded by high stone walls. Skilled archers perched on top of
those walls, and outside of the walls was a moat.

(a) Discuss the extent to which these defenses satisfy the independence re-
quirement we require for an effective defense in depth.

(b) Discuss the extent to which these defense satisfy the overlap requirement
we require for an effective defense in depth.

(c) Identify points of similarity shared by these mechanisms and, for each,
outline an attack.

1.18 Passwords and cryptographic keys are not effective unless they are kept
secret. Reconcile this requirement with the exhortation to avoid security by
obscurity.

1.19 Machine guns and land mines can be deployed as a perimeter defense
against infantry attacks, just as a firewall can serve as a perimeter defense
against malware from the Internet. In both cases, action by the perimeter
defense stops the adversary from advancing to the interior.

(a) Discuss whether secrecy of design applies to informing the adversary about
the exact location of the machine guns and land mines.

(b) Discuss whether secrecy of design applies to informing the adversay about
the exact criteria used by the firewall for deciding whether or not to block
a packet.

(c) What are the essential similarities and differences for these two perimeter
defenses that would explain the similar/different conclusions you give for
parts (a) and (b).

1.20 Suppose sampling is being used to select the subset of air travelers subject
to a detailed security search, and this sampling is based on a secret profile.

(a) Discuss whether having this profile be secret is secrecy of design and
whether the decision to keep the profile secret leads to better security.

(b) Suppose the sampling is based on a secret list of travellers who might be
terrorists. Discuss whether keeping secret the criteria for membership on
this list of names is secrecy of design and whether that decision to keep
that secret leads to better security.

(c) Discuss whether keeping secret the list of names itself in part (b) is secrecy
of design and whether that decision to keep that secret leads to better
security.

Copyright 2007. Fred B. Schneider. All rights reserved

1.5. REAL WORLD PHYSICAL SECURITY 33

Notes and Reading

Many terms have both been used to mean continued and correct system opera-
tion in settings where mother nature and malevolent actors cannot be ignored.
With the 1999 publication of the National Academy’s Trust in Cyberspace [16]
and Microsoft’s 2002 Trustworthy Computing initiative to revamp its Windows
software, the term “trustworthiness” has emerged as the more popular locution.

That said, the computer security research community has until recently been
quite independent of the somewhat older fault-tolerance research community,
even though interpreting dependability to include security had been advocated
within the latter [10]. Such insularity was problematic because, as illustrated at
the start of this chapter in the discussion about replication and confidentiality
for Byzantine fault-tolerance, security cannot be ignored when implementing
fault-tolerance and vice versa. Byzantine fault-tolerance, by the way, was de-
veloped in connection with the SIFT (Software Implemented Fault Tolerance)
project [21] at SRI to build a computing system for control of fly-by-wire air-
craft, although the term “Byzantine faults” doesn’t appear in print until a 1982
paper [8], written to popularize an agreement algorithm developed for SIFT.

We distinguish the terms threat, vulnerability, and attack, in this book be-
cause doing so creates a richer language and enables more precise technical
discussions. Not all authors make these distinctions. However, there is univer-
sal agreement on informal definitions for confidentiality (or secrecy), integrity,
and availability, and most authors agree that these are the foundation for what
we are calling security policies (though the distinction between “policies” and
“properties” we are making in §1.2 is not widespread). Our definition of in-
tegrity is based on the formal definition in [1] of safety properties [7] and our
definition of availability is based on the formal defniition in [2] of liveness proper-
ties [7]. The distinction between confidentiality properties and safety properties
was first noted by McLean in [12], and there is still no universally accepted
formal definition of confidentiality.

The disturbing revelation in §1.2.1 that gender, date of birth, and zip code
together constitute a unique identifier for people in Cambridge, Massachusets is
described by Latanya Sweeney [17] to illustrate privacy violations allowed by cer-
tain so-called anonymous databases. And the insight we give at the end of §1.2.1
about using context to define privacy comes from a philosopher, Helen Nissem-
baum, who developed it while working with computer security researchers; her
approach is called contextual integrity [13]. See [20] for an excellent survey and
snapshot of contemporary thinking about technical and legal issues concerned
with privacy.

The various principles we give in §1.3 and §1.4 are derived from a paper by
Saltzer and Schroeder [15] which, though written in the mid 1970’s, remains
worth reading today. An account of some devious ways that trust can be mis-
placed is the basis for the 1983 Turing Award acceptance speech [19] delivered
by Ken Thompson. That security mechanisms be viewed through the lens of
isolation, monitoring, and recovery is suggested by Lampson in [9]. In depth
discussions of the various security mechanisms appear throughout this book,

Copyright 2007. Fred B. Schneider. All rights reserved

34 BIBLIOGRAPHY

and citations to additional reading are given then.

Much has been written about secrecy of design, though one frequently finds
newer papers simply repeat old arguments. Our discussion of design secrecy is
based on the one appearing in Appendix I of [16]. However, the idea that secu-
rity of a mechanism should not depend on the secrecy of its design is generally
credited to the Dutch cryptographer Auguste Kerckhoffs, who proposed in an
1883 essay [6] that the security of a military cryptosystem depend on keeping
the key secret but not the design. Eric Raymond’s essay “The Cathedral and
the Bazaar” in [14] is the classic description of open software, and it is recom-
mended reading for understanding this truly innovative approach to software
development. Finally, a piece of fresh thinking on open design is the article [18]
by Peter Swire, which characterizes when disclosure can help enhance security
(and when it does not) by comparing the stipulation that “there is no security
by obscurity” to the World War II admonition “loose lips sink ships”.

Lampson’s argument in [9] provided the inspiration for our discussion in
§1.5.1 that security should be based on accountability. Also the “gold stan-
dard” (authorization, authentication, and audit) is described in [9], although
Lampson started using this mnemonic in Fall 2000. See [5] for a more complete
discussion of the benefits and risks associated with accountability as the basis
for enforcement, and read Larry Lessig’s seminal opus [11] for an extensive dis-
cussion about legal and societal issues that come with universally embracing
accountability.

Risk management has its roots in the business world—economics and, in
particular, investment. Many have advocated risk management for computer
security, with Ross Anderson among the more effective spokesman by first por-
traying security as an engineering enterprise in his textbook [4] and then, with
papers like [3], helping to establish “security economics” as a respectable area
of inquiry.

Bibliography

[1] Bowen Alpern, Alan J. Demers, and Fred B. Schneider. Safety without
stuttering. Information Processing Letters, 23(4):177–180, November 1986.

[2] Bowen Alpern and Fred B. Schneider. Defining liveness. Information Pro-

cessing Letters, 21(4):181–185, October 1985.

[3] Ross Anderson and Tyler Moore. The economics of information security.
Science, 314(5799):610–613, October 2006.

[4] Ross J. Anderson. Security Engineering: A Guide to Building Dependable

Distributed Systems. Wiley Computer Publishing, 2001.

[5] Seymour Goodman and Herbert Lin, editors. Towards a Safer and More

Secure Cyberspace. National Academy Press, 2007.

Copyright 2007. Fred B. Schneider. All rights reserved

BIBLIOGRAPHY 35

[6] Auguste Kerchhoffs. La cryptographie militaire. Journal des Sciences Mil-

itaires, IX:5–38, January 1883.

[7] Leslie Lamport. Proving the correctness of multiprocess programs. IEEE

Transactions on Software Engineering, SE-3(2):125–143, March 1977.

[8] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine gener-
als problem. ACM Transactions on Programming Languages and Systems,
4(3):382–401, July 1982.

[9] Butler Lampson. Computer security in the real world. IEEE Computer,
37(6):37–46, June 2004.

[10] J. C. LaPrie, editor. Dependability: Basic Concepts and Terminology.
Springer-Verlag, 1992.

[11] Lawrence Lessig. Code and Other Laws of Cyberspace. Basic Books, 2000.

[12] John McLean. A general theory of composition of trace sets closed un-
der selective interleaving functions. In Proceedings IEEE Symposium on

Research in Security and Privacy, pages 79–93, Los Alamitos, CA, 1994.
IEEE Computer Society Press.

[13] Helen Nissenbaum. Privacy as contextual integrity. Washington Law Re-

view, 79(1):119–158, 2004.

[14] Eric S. Raymond. Cathedral and the Bazaar: Musings on Linux and Open

Source by an Accidental Revolutionary. O’Reilly Media, 2001.

[15] Jerome H. Saltzer and Michael D. Schroeder. The protection of information
in computer systems. Proceedings of the IEEE, 63(9):1278–1308, March
1975.

[16] Fred B. Schneider, editor. Trust in Cyberspace. National Academy Press,
1999.

[17] Latanya Sweeney. k-Anonymity: A model for protecting privacy. Inter-

national Journal on Uncertainty, Fuzziness and Knowledge-based Systems,
10(5):557–570, 2002.

[18] Peter Swire. A model for when disclosure helps security: What is different
about computer and network security? Journal on Telecommunications

and High Technology Law, 3(1):163–208, 2004.

[19] Ken Thompson. Reflections on trusting trust. Communications of the

ACM, 27(8):761–763, August 1984.

[20] Jim Waldo, Herbert Lin, and Lynette Millett, editors. Engaging Privacy

and Information Technology in a Digital Age. National Academy Press,
2007.

Copyright 2007. Fred B. Schneider. All rights reserved

36 BIBLIOGRAPHY

[21] John H. Wensley, Leslie Lamport, Jack Goldberg, Milton W. Green, Karl N.
Levitt, P.M. Melliar-Smith, Robert E. Shostak, and Charles B. Weinstock.
SIFT: Design and analysis of a fault-tolerant computer for aircraft control.
Proceedings of the IEEE, 66(10):1240–1255, October 1978.

Copyright 2007. Fred B. Schneider. All rights reserved

