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Preview

• Introduction to game theory:

– Modeling formalisms
– Intuition

• Illustrative examples:

– Traditional
– Cyber security (simplistic)

• References:

– Game theory texts & monographs (many!)
– Alpcan & Başar, Network Security: A Decision and Game Theory Approach, online
– Roy et al., “A survey of game theory as applied to network security”, 2010
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What is game theory?

• Myerson, Game Theory: Analysis of Conflict, 1997:

“the study of mathematical models of conflict and cooperation
between intelligent rational decision makers”

• Popular perception:

• Broader view: Auctions & markets, conventions, social networks, traffic,...
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Elements

• Players (actors, agents):
P = {1, 2, ..., p}

• Strategies (choices):

– Individual:
si ∈ Si

– Collective:
(s1, ..., sp) ∈ S = S1 × ...× Sp

• Preferences, expressed as utility function:

ui : S → R

s �i s′ ⇔ ui(s) ≥ ui(s
′)

• Essential feature: Preferences over collective strategies:

max
si∈Si

ui(si) vs max
si∈Si

ui(si, s−i)
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Outline

• Modeling formalisms:

– Static games w/ Perfect information
– Static games w/ Imperfect information
– Dynamic games w/ Perfect information
– Dynamic games w/ Imperfect information

• Full rationality vs bounded rationality

• Throughout:

– Players
– Strategies
– Preferences

• Omission: Cooperative game theory
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Example: Proportional allocation (static w/ perfect info)

• Setup:

– Players bid bi for shared resource
– Resource allocated to player i is:

bi
b1 + ... + bp

– Player utility is:

ui(b) = φi

( bi
b1 + ... + bp

)
− bi

for specified φi(·).

• Proportional allocation is one (of several) mechanisms for resource allocation.
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Example: Network monitoring (static w/ perfect info)

• Players & strategies:

– Administrator: {Monitor, Not Monitor}
– Attacker: {Attack, Not Attack}

• Preferences/utility function:

M NM
A −cf − ca, w − cm w − ca, 0

NA 0, w − cm 0, w

where

– w = value of asset
– cf = cost of failed attack
– ca = cost to execute attack
– cm = cost to monitor
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Example: Network monitoring (dynamic w/ perfect info)1

• Setup: External world (E), Web server (W), File server (F), Workstation (N)

• States:

– Software: ftpd, httpd, nfsd, process, sniffer, virus

– Flags: User account compromised & data compromised
– 4 Traffic levels per edge
– Number of states ≈ 4 billion

1Source: Lye & Wing, “Game strategies in network security”, Int J Inf Secur, 2005.
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Dynamic network monitoring, cont

• Actions (per state):

• Note: “Action” 6= “Strategy”
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Dynamic network monitoring, cont

• Dynamics:

– State/action dependent transition prob-
abilities

– Transition dependent rewards/costs

• Stochastic Markov game:

– Stategy = state dependent action rules
– Preferences = Expected future dis-

counted rewards/costs

• Compare:

M NM
A −cf − ca, w − cm w − ca, 0

NA 0, w − cm 0, w

(blurred distinction)
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Descriptive agenda, solution concepts, & Nash equilibrium

• Single decision maker:

– Strategy: S
– Preferences: u(s)

– Model of rational agent:
s∗ = arg max

s′∈S
u(s′)

• Multiple decision makers:

– Model of collective = “Solution concept”
– Prevalent solution concept: Nash equilibrium
– Others: No regret set, correlated equilibrium, cognitive hierarchy

• The action profile a∗ is a Nash equilibrium if for every player i,

ui(s
∗) = ui(s

∗
i , s
∗
−i) ≥ ui(si, s

∗
−i)

for every si ∈ Si.

• No player has a unilateral incentive to change action
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Nash equilibrium (NE) discussion

• Existence (Nash theorem)

• Multiple equilibria:

S H
S 3, 3 0, 2

H 2, 0 2, 2

Stag hunt
– NE (S, S) is “payoff dominant”
– NE (H,H) is “risk dominant”

• Descriptive value, e.g. “beauty contest”:

– Players select number between 0 & 100
– Player closest to 2/3 of average wins

• Computational complexity in large games
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NE informational requirements

M NM
A −cf − ca, w − cm w − ca, 0

NA 0, w − cm 0, w

• No NE for “pure” strategies

• Introduce “mixed” strategies

– Pr [A] = p & Pr [NA] = 1− p
– Pr [M] = q & Pr [NM] = 1− q
– Restate preferences as expected utility

• NE: Solve (p, q)

w − cm = (1− p) · w
q · (−cf − ca) + (1− q) · (w − ca) = 0

• Implications:

– At NE, both players are indifferent
– Specific probabilities depend on opponent’s utility
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NE & prescriptive value

• Case I: Dominant strategy

– s∗i is a (weakly) dominant strategy if for all s−i:

ui(s
∗
i , s−i) ≥ ui(s

′
i, s−i)

i.e., s∗i is always optimal
– Example: 2nd price sealed bid auction
∗ Players have private valuations, vi
∗ Players bid bi
∗ High bid wins and pays second highest bid
∗ Fact: bi = vi is a dominant strategy

• Case II: Security strategy (hedge against worst case)

ssec
i = arg max

si
min
s−i

ui(si, s−i)

– Idea: Select ssec
i to maximize guaranteed utility

– Special cases: Security strategies define NE
– Example: Zero-sum games with mixed strategies (minimax theorem)
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Outline

• Modeling formulations:

– Static games w/ Perfect information
– Static games w/ Imperfect information
– Dynamic games w/ Perfect information
– Dynamic games w/ Imperfect information

• Full rationality vs bounded rationality

• Throughout:

– Players
– Strategies
– Preferences
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Bayesian games & uncertain scenarios

M NM
A −cf − ca, w − cm w − ca, 0

NA 0, w − cm 0, w

Malicious

M NM
NA 0, w − cm 0, w

NA 0, w − cm 0, w

Normal

• Example2:

– System user knows own “type”
– Administrator receives signals (e.g,. {G, Y,R}) and forms “beliefs”
∗ G⇒ Pr [Malicious = 0.05]

∗ Y ⇒ Pr [Malicious = 0.25]

∗ R⇒ Pr [Malicious = 0.8]

• Can introduce uncertainty to either or both players (e.g., “honey pot or not”)

• Standard example: Auctions

2Source: Liu et al., “A Bayesian game approach for intrusion detection in wireless ad hoc networks”, GameNets, 2006.
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Bayesian NE & discussion

• Strategy: Mapping from signal to action probabilities

• Note distinction between “strategy” and “action”

• Bayesian NE: Mutually optimal strategies

• Common knowledge, e.g.3,

L R
L 2, 2 0, 0

R 3, 0 1, 1

α

L R
L 2, 2 0, 0

R 0, 0 1, 1

β

L R
L 2, 2 0, 0

R 0, 0 1, 1

γ

– Beliefs:
∗ Player 1: Pr [ω|α] = {1, 0, 0} & Pr

[
ω|βγ

]
= {0, 3/4, 1/4}

∗ Player 2: Pr
[
ω|αβ

]
= {3/4, 1/4/0} & Pr [ω|γ] = {0, 0, 1}

– Examine “knowledge” in state γ

• Value of information: More accurate signals can lead to lower utility.

• Sensitivity: NE depend on belief probabilities and signal structure of opponents.

3Source: Osborne, An Introduction to Game Theory, 2003.
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Prescriptive agenda: Mechanism design

• Setup:

Private info D
=⇒ Social decision

vs

Private info S
=⇒ Messages M

=⇒ Social decision

– A “mechanism”M is a rule from reports to decisions.
– Basis:
∗ Solution concept S for induced game
∗ Probabilistic model of agent views of environment

– D =M◦ S?

• Standard example: 2nd price auction
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Outline

• Modeling formulations:

– Static games w/ Perfect information
– Static games w/ Imperfect information
– Dynamic games w/ Perfect information
– Dynamic games w/ Imperfect information

• Full rationality vs bounded rationality

• Throughout:

– Players
– Strategies
– Preferences
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Extensive form: Taking turns

• Entry game:

– Challenger (Player 1) determines whether or not to compete
– Incumbent (Player 2) determines whether or not to oppose challenger
– Payoffs to (player 1, player 2)

• Strategy = Player’s action at every node

• Strategic form representation:
Yield Fight

In 2, 1 0, 0

Out 1, 2 1, 2

• NE of strategic form representation: (In,Yield) & (Out,Fight)

• Issue: Non-credible threats!
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Example: Centipede game

• Backwards induction (i.e., dynamic programming) leads to

– Construction of Nash equilibrium
– Exclusion of non-credible threats

Terminology: subgame perfect equilibrium

• Fact: For centipede game, subgame perfect equilibrium is to Stop at any opportunity for
both players

• Criticism: Imagine very long centipede game.

– What should Player 2 do according to subgame perfect equilibrium at interim stage?
– What should Player 2 do intuitively?

20



Repeated games

• Players engage in repeated engagements of same game

• Assumption: Players observe actions of opponents

• Strategy: Mapping from history to (probabilities of) actions

σi : H → Ai

• Note distinction between “strategy” & “action”

• Network monitoring:

{(NA,NM), (NA,NM), (A,NM)} −→???

• Utilities:

– Sum of stage payoffs (finite)
– Discounted future sum of stage payoffs (infinite)
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“Infinite” repetition and new equilibria

• Standard example: Long run vs long run Prisoner’s dilemma

C D
C 3, 3 0, 4
D 4, 0 1, 1

– One shot or finitely repeated NE: Play D (dominant strategy)
– Repeated NE: Play C until observe D, then punish

• Entry game: Long run vs short run players

...

– One shot or finitely repeated NE: Fight is not credible
– Repeated NE: Fight is credible

• cf., Repeated game “folk theorems”

• Note: “infinite repetition” equivalent to probabilistic termination
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Outline

• Modeling formulations:

– Static games w/ Perfect information
– Static games w/ Imperfect information
– Dynamic games w/ Perfect information
– Dynamic games w/ Imperfect information

• Full rationality vs bounded rationality

• Throughout:

– Players
– Strategies
– Preferences
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Illustration: Noisy state monitoring

• Setup:

– Two states & two players
– Action dependent state transition probabilities
– Each player has correlated observations about state
– Strategy: Mapping from private history to actions

• Obstruction:

– Beliefs (of beliefs...) on opponent observations
– Non-standard information patterns
– In brief: Intractable

• Positive results for special cases:

– Repeated games with public monitoring
– Belief-free equilibria
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Simple example: Repeated zero-sum game

A B
A 0, 0 1,−1

B 0, 0 −1, 1

α

A B
A −1, 1 0, 0
B 1,−1 0, 0

β

• Setup:

– Administrator (row) knows state (allowed behavior)
– Attacker has probabilistic beliefs
– Players monitor actions of opponent
– Two-stages

• NE (depending on specifics...)

– Administrator does not use dominant strategy
– Rather, use probabilities based on true state (deception?)
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Outline

• Modeling formulations:

– Static games w/ Perfect information
– Static games w/ Imperfect information
– Dynamic games w/ Perfect information
– Dynamic games w/ Imperfect information

• Full rationality vs bounded rationality

• Throughout:

– Players
– Strategies
– Preferences
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Game theoretic learning

• How could agents converge to NE? If so, which NE?

Arrow: “The attainment of equilibrium requires a disequilibrium process.”

• Monographs:

– Weibull, Evolutionary Game Theory, 1997.
– Young, Individual Strategy and Social Structure, 1998.
– Fudenberg & Levine, The Theory of Learning in Games, 1998.
– Samuelson, Evolutionary Games and Equilibrium Selection, 1998.
– Young, Strategic Learning and Its Limits, 2004.
– Sandholm, Population Dynamics and Evolutionary Games, 2010.

• Surveys:

– Hart, “Adaptive heuristics”, Econometrica, 2005.
– Fudenberg & Levine, “Learning and equilibrium”, Annual Review of Economics, 2009.

• Relevance: Online distributed self-configuration
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Learning among learners

• Single agent adaptation:

– Stationary environment
– Asymptotic guarantees

• Multiagent adaptation:

Environment

=

Other learning agents

⇒

Non-stationary

• A is learning about B, whose behavior depends on
A, whose behavior depends on B...

• Resulting “feedback loop” has major implications
on achievable outcomes.
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Illustration: Marginal foresight & mixed equilibria4

• Rock-paper-scissors

• Reinforcement learning/replicator dynamics with & without “marginal foresight”

4Arslan & Shamma, “Anticipatory learning in general evolutionary games”, IEEE Conference on Decision and Control,
2006.
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Concluding remarks

• Cyber security and mathematical social sciences:

– Human decision makers
– Growing interest in “behavioral game theory” and “neuro-economics”
– Limitations on repeatable controlled experiments

• Issues:

– Descriptive vs Prescriptive agenda
– Computational requirements
– Full rationality
– Breaking the symmetry
∗ Setup: Repeated game with slightly perturbed payoffs
∗ Players monitor opponent actions but do not know opponent perturbation
∗ Players play optimal strategies w.r.t. probabilistic forecast models
∗ Theorem5: Forecast probabilities are incorrect

5Source: Foster & Young, “On the impossibility of predicting the behavior of rational agents,” PNAS, 2001.
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Concluding remarks

• Cyber security and mathematical social sciences:

– Human decision makers
– Growing interest in “behavioral game theory” and “neuro-economics”
– Limitations on repeatable controlled experiments

• Issues:

– Descriptive vs Prescriptive agenda
– Computational requirements
– Full rationality
– Breaking the symmetry
∗ Setup: Repeated game with slightly perturbed payoffs
∗ Players monitor opponent actions but do not know opponent perturbation
∗ Players play optimal strategies w.r.t. probabilistic forecast models
∗ Theorem5: Forecast probabilities are incorrect

Lou Rawls: “Ain’t a horse that can’t be rode; ain’t a man that can’t be throwed.”

5Source: Foster & Young, “On the impossibility of predicting the behavior of rational agents,” PNAS, 2001.
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