Self Adaptive High Interaction Honeypots
Driven by Game Theory

Gérard Wagener!2, Radu State!, Alexandre Dulaunoy?, and Thomas Engel

! University of Luxembourg
{radu.state,thomas.engel}@uni.lu
2 SES S.A.

{gerard.wagener,alexandre.dulaunoy}@ses. com

Abstract. High-interaction honeypots are relevant to provide rich and
useful information obtained from attackers. Honeypots come in different
flavors with respect to their interaction potential. A honeypot can be
very restrictive, but then only a few interactions can be observed. If a
honeypot is very tolerant though, attackers can quickly achieve their goal.
Having the best the trade-off between attacker freedom and honeypot
restrictions is challenging. In this paper, we address the issue of self
adaptive honeypots, that can change their behavior and lure attackers
into revealing as much information as possible about themselves. The
key idea is to leverage game-theoretic concepts for the configuration and
reciprocal actions of high-interaction honeypots.

1 Introduction

Simulating failures in order to lure attackers was reported for the first
time in the classical paper ” An Evening with Berferd” [I], where man-
ual interactions from a human system administrator lured an attacker
into revealing many of his tactics and tools. During the operation of an
high-interaction honeypot we observed that attackers follow a dedicated
goal. We manually interfered with the tools installed and operated by at-
tackers and noticed that some attackers connected back to the honeypot
and tried to solve the problems. Some attackers even tried to harden the
system aiming to lock out other attackers. Thus, we assume that attack-
ers are rational and follow a specific goal during attacks. We address in
this paper a first step towards an automated failure injecting honeypot
aiming to disclose as much information as possible about an attacker.
According to Lance Spitzner, a honeypot is a resource dedicated to be
attacked [2]. Honeypots are frequently used to monitor or lure attackers
and serve as baits for attackers. Once honeypots are compromised, at-
tackers can be traced and attacking techniques can be learnt. On the one
hand, if a honeypot has to limited capabilities some attack goals can not
be reached and not much can be learnt. On the other hand, if a honeypot
exposes to many and easily accessible features to an attacker, the attack
goal can be easily reached and only a part of the attack can be observed.
The goal of an attacker is also often unknown. The challenge addressed
in this work is to elaborate an adaptive high-interaction honeypot that

tries to optimize the retrieval of knowledge from an attacker. The level
of interaction is a consequence of the capabilities of a honeypot. The
more features are implemented in a honeypot, the more interactions are
possible between attackers and the honeypot. One way to obtain more
interactions, is to partially allow attackers to execute some programs,
leading them to explore alternative execution paths and reveal more
information about themselves (attack tools) and to disclose other repos-
itories, used for malicious purposes. Similarly, an adaptive honeypot can
abnormally terminate the execution of programs by an attacker and lead
the attacker to perform other activities, that can provide insightful infor-
mation to the security community. We address in this paper, the design,
implementation and validation of adaptive high-interaction honeypots.
The major research challenges that we had to address were:

— to design an adaptive behavior for a honeypot that should be optimal

and remain stealthy.
— to implement an effective Linux kernel monitoring solution capable
to trace attacker activities on a system.

The remaining paper is organized as follows: Sectionexplains our high-
interaction honeypot model. Section [3] formally describes the game be-
tween attackers and the honeypot and shows that our honeypot model
can be fed with data delivered from a deployed high-interaction honey-
pot. Our experiments are shown in section [4 and the state of the art
activities are summarized in section |5l Finally, the article is concluded
in section [6] and future work activities are announced.

2 Modeling a High-interaction Honeypot

‘We consider high-interaction honeypots operating a Linux operating sys-
tem exposing a SSH server to attackers. The rationale behind this choice
is that attackers often use specialized tricks or side effects to detect or
evade from low-interaction honeypots and that SSH is a popular attack
vector for attackers [3], [4]. We model high-interaction honeypots with
a hierarchical probabilistic automaton. This model, as detailed in the
following, is needed to frame the honeypot capabilities in the context of
game theory.

2.1 Honeypot Hierarchical Probabilistic Automaton

Probabilistic automata are often used in the field of pattern recognition
[B]. An attacker can connect to a high-interaction honeypot and can exe-
cute programs. Downloads can be performed with tools like wget, curl,
ftp, archives can be extracted with programs like tar and gzip and so
on. We define the states of the automaton as the programs that can be
executed on the honeypot. Moreover, we add a state labeled unknown in
order to describe the fact that new and unseen tools could be installed
and used later on. Each program has some program arguments that are
passed as array to the main function. If no command line arguments are
explicitly passed to the program, the first command line argument corre-
sponds to the program name [6]. Moreover, a program can have the same

command line argument than another one but with a different seman-
tic. Thus, we introduce a hierarchy between programs and command
line arguments. Each program is formalized as automaton where each
state represents a command line argument. The states in an automaton
representing a program are called macro states and each macro state con-
tains micro states (i.e. the command line arguments). Some transitions
between programs or command line arguments are more likely than oth-
ers. The program wget is often executed previously to the program tar.
Therefore, each transition can be modeled using a transition probability.
The same notation as proposed by Thollard et al. [5] is used. The set
Qa4 contains the programs installed on the honeypot including an un-
known state and the set of states for a given program is denoted Q’,.
Attackers penetrate the honeypot through the SSH server. Thus, the ini-
tial probability for the state /usr/sbin/sshd is 1 and 0 for all the other
states. Moreover the alphabet consists of the commands executed by the
attacker. An example of such a hierarchical probabilistic automaton is
shown in figure EEI An attacker connects to the honeypot via SSH and
stays in the sshd state. Next he or she can execute the program bash
or uname with the equal probability of 0.5. After the execution of the
program bash, the programs wget, rm and uname have the same likeli-
hood to be executed, namely 0.25. The program 1s is executed with the
command line arguments -1la, -1 with an equal probability of 0.5.

Fig. 1. Honeypot hierarchical probabilistic automaton example

2.2 Process Vectors

The transitions between programs are described by the conditional prob-
abilities, capturing the likelihood of one program being executed after a

3 For the purpose of understanding a simplified automaton is presented.

previous one. We use sequences of program executions from a deployed
high-interaction honeypot to determine these probabilities. Such a se-
quence of programs is considered as process vector which is observed
from one attack and where each element is a program that is executed
during an attack. An attacker who executes the programs /bin/bash,
/usr/bin/wget and /usr/bin/tar, generates the process vector < /
bin/bash , Jusr/bin/wget , /usr/bin/tar >.

2.3 Attacker Process Trees

In order to obtain the process vectors, we have to dig into the kernel data
structure (on the honeypot) holding process tree information. After hav-
ing compromised the honeypot, an attacker usually executes programs.
Such an execution triggers a clone or do_exec_ve system call which
should be monitored. Multiple attackers can be connected to the honey-
pot at the same time and the operating system itself is using do_exec_ve
and clone system calls. The system calls that are related to a given
attack can be identified as follows: In a Linux operating system each
process has a process identifier (PID) and a parent process identifier
(PPID) [7]. An attack usually starts with a privilege separated process
of the SSH server [§], denoted po. The process po then forks, resulting in
a clone system call or directly executes a program via the do_exec_ve
system call. We consider that the process po executes a program and
creates another copy of the process, denoted pi. The parent process of
p1 is thus po and the result of the execution of a sequence of programs
is a process tree of an attack which is a subtree of the Unix process tree
on the honeypot. We define a process tree as a tree structure where each
node can contain a process id, a timestamp, a program name or a com-
mand line argument resulting from a do_exec_ve or clone system call.
An edge links two process identifiers with each other, which represents
the parent child relationship. Furthermore, in a process tree, each parent
of a leaf represents a program name and each leaf represents command
line argument (at least the program name [6]).

One process tree is shown in figure[2] The privileged separated process of
the SSH server has the process identifier 4121 and is the root of the tree.
Two clone system calls are done; one results in a process with the process
identifier 4127 and another one in the process identifier 4129. The process
with the identifier 4127 is created after one second and the process with
the identifier 4129 is created after 3 seconds. Then the process with the
identifier 4127 executes a program called /bin/bash after one second and
the process with the identifier 4129 starts the /bin/uname program after
5 seconds. The program /bin/uname is started with the argument -a and
the command line arguments bash and uname represent the respective
program names.

2.4 Inducing a Honeypot Hierarchical Probabilistic
Automaton

‘We model the honeypot capabilities as a hierarchical probabilistic au-
tomaton where each state represents a program. Each state is further-

’ I PD
V \i [Program name
‘ ‘ [] Command line arguments

Fig. 2. Process tree example

more an automaton on its own, where combinations of command line
arguments build the states of the sub-automaton. From a deployed high-
interaction honeypot we have extracted the process trees related to an
attack. A process tree can be composed of PID nodes, nodes containing
the programs that were executed and nodes modeling command line ar-
guments. Due to the fact that the process identifiers change from one
attack to another, we are interested to transform these process trees in
process vectors describing the sequences of programs that were executed
during an attack. The order of program execution is important. A good
example is when a tool was downloaded that is then extracted and exe-
cuted. To recover the order we use the timestamps in the process trees.
The time difference of each leaf with the root enables us to determine
the position of a program in the process vector. In the example shown in
figure 2] the process vector ¥ is < /bin/bash, /bin/uname > because the
program /bin/bash was executed before the program /bin/uname. Each
attacker generates a process tree that is converted to a process vector.
All these vectors are now inserted in a two dimensional matrix transition
matrix. The observed programs are used as labels for the columns and
rows respectively. Each cell contains the frequency of how often a couple
of programs was observed. The transition probability P4 is computed
from the transition matrix. Each cell is divided by the sum of the row.
The automaton containing the macro states is created from the tran-
sition matrix. In figure [T} each state is represented by a circle and the
edges are labeled with the transition probability. For instance, a tran-
sition from the macro state sshd can be done to the macro state bash
with a probability of 0.5. Another transition can then be done to the
macro state 1s. The program 1s can operated in different modes by ac-
cepting different command line arguments. In this example the states
denoted by ”1” and ”-la” are micro states and belong to the automaton
1s. First, the hierarchical probabilistic automaton may be incomplete
because it is constructed from honeypot observations. Therefore, we in-
tegrate a state in the automaton which is called ”unknown”. Second,

rare transitions may be unobserved. To counteract this phenomenon we
smooth the probabilities that we derived from honeypot observations,
where the smoothing factor is denoted e. In this case each probability
> 0 is multiplied by (1—¢) and from a given state, transitions are created
to all other remaining states. If we assume that our automaton has N
states and the number of transitions for a given state is n, then N —n
transitions are created having the probability .. The automaton has
now N? transitions and is able to capture all possible transitions. In
practice, the automaton could be periodically induced in order to adjust
the transition probabilities.

3 The Honeypot Game

Intuitively, the fact that attackers connecting to the honeypot can be
seen as game between the honeypot and the attackers. We assume that
attackers try to achieve their goal as fast as possible. They want to min-
imize the number of interactions with the honeypot. The honeypot aims
to maximize the number of interactions or to learn as much as possible
from attackers or to distract them as long as possible from real assets.
In this article we define two possible actions for the honeypot and three
different strategies for an attacker. We determine Nash Equilibriums [9],
providing the optimal strategies for both the attacker and the honeypot.

3.1 Modeling Attacker and Honeypot Actions

Our current adaptive honeypot can accept or block the execution of a
program which is implemented by allowing or blocking the do_exec_ve
system call in a Linux kernel [7].

Block a do_exec_ve system call. The honeypot can crash a tool of an
attacker which can be derived from blocking the do_exec_ve sys-
tem call. In that case an error code is immediately returned instead
of executing the regular code of the do_exec_ve system call. Let
Pr(Block) be the probability that the adaptive honeypot blocks the
system call do_exec_ve. This decision is taken at each do_exec_ve
system calﬂ

Allow a do_exec_ve system call. The honeypot behaves like a normal
high-interaction honeypot. The probability to allow a system call is
1 — Pr(Block).

Attackers often find out that the honeypot is not immediately ready for

their malicious activities. Thus, they download their tools, install them

and execute them. They download tar balls containing a pre-compiled
version of their program or the source code is downloaded and compiled
on the honeypot. In both cases attackers often configure their programs
on the honeypot. All these actions results in interactions with the hon-
eypot. In our hierarchical probabilistic automaton, the interactions with
the honeypot result in transitions from one state to another one. We as-
sume that attackers are rational and that they select the next transition

4 Practically, an explicit error code of the system call could be returned.

on the most probable path in the automaton. In the game between at-
tackers and the honeypot we define three actions for attacker when their
transitions are blocked.

Retry of a command. Attackers can retry a command from a failure.
First a failure might be due to a syntax error. The second reason
might be a timeout that emerged during the program execution. For
instance, an attacker may to download a file and a network time-
out may emerge. In this case another repository might be disclosed.
Third, the execution of a program might produce an undesired effect.
A wrong command line argument might have been used. The pro-
gram is executed again with a different command line argument. Let
Pr(Retry) denote the probability that attackers execute the same
command again.

Select an alternative solution. A downloaded program may fail dur-
ing execution. Some attackers try to debug the problem on the hon-
eypot. They can check the configuration file of the program or run
an inspection tool like strace on the program. They might try to
download another program or to download the source code of the
program that will be compiled on the honeypot. No matter which
option they select, their behavior can be classified in a category de-
scribing the actions of choosing an alternative solution for obtaining
their goal. Let Pr(Alternative) denote the probability that attacker
select an alternative command to achieve their initial goal.

Quit. Some attackers check the capabilities of the honeypot and if
they suspect a trap or a worthless system, then they will leave. Let
Pr(Quit) describe the probability that attacker quit.

The relation [1] holds for the attacker strategies.

Pr(Quit) + Pr(Retry) + Pr(Alternative) = 1 (1)

An example of attacker and honeypot strategies is shown in figure
We observe that an attacker tries to invoke the command nmap (a pop-
ular network scanner). The honeypot might allow the execution (with
the probability 1 — Pr(Block)) and in this case the attacker continues
and executes the program wget (with a probability of 0.95). If the tool
nmap is not allowed by the honeypot, the attacker can decide to either
quit (with a probability of Pr(Quit)) or to retry the execution of nmap
or to execute another command (for instance uname - with a probabil-
ity of 0.6). The execution of nmap was blocked and its probability was
equally distributed among the transitions to the states wget and uname.
The probabilities used by attackers to choose the next command to be
executed can be estimated from an operational high-interaction honey-
pot. The probabilities used by the honeypot to block the execution of
a command is a configuration setting and reflects the strategy played
by the honeypot. Similarly, the probabilities used by the attacker to ei-
ther quit the session, or retry a command (and consequently to choose
another command) give the strategy played by the attacker.

The main question is related to what are the optimal settings for both the
honeypot (Pr(Block)) as well as for the attacker (Pr(Quit), Pr(Retry),
Pr(Alternative)).

. Attacker

. Honeypot

Fig. 3. Honeypot game example

3.2 Modeling Attacker and Honeypot Games

We reuse the definitions and notations proposed by Amy Greenwald [9]
in order to formally describe our games between attackers and the honey-
pot. The game between the attacker and the honeypot has two players.
Thus, N = {honeypot, attacker}. The honeypot can block do_exec_ve
system calls with different probabilities. The set A, corresponds to the
set of blocking probabilities the honeypot can choose. An attacker can
choose to retry a command, to search for an alternative command or
to leave. We define an attacker strategy with a 3-tuple (Pr(Retry),
Pr(Alternative), Pr(Quit)) and the set A, contains all these strategies.
One purpose of game theory is to compute the optimal strategy profiles
for the players which results in the computation of Nash Equilibrium. A
Nash equilibrium in the context of honeypot game means that neither the
honeypot nor the attacker can increase their expected payoffs assuming
that neither player does not change his strategy during the game.

Computing Payoffs Respective to attacker and honeypot strategies
we propose two honeypot games. The games are different with respect to
the payoff computation. We propose the following payoff computation&ﬂ
Number of transitions. We assume that attackers are rational and
that they want to achieve their goal as fast as possible. Thus, an at-
tacker tries to minimize the number of transitions in the hierarchical
probabilistic automaton. The honeypot tries to learn as much as pos-
sible from the attacker. Potential useful information for a honeypot
is to collect tools owned by attackers or to discover the sources where
they are downloaded from. Hence, the honeypot tries to maximize
the number of transitions performed by an attacker. The payoff for
the honeypot R} returns the number of transitions performed by an
attacker. The more transitions an attacker does, the better it is for
the honeypot. Attackers try to minimize their transitions and their
payoff function returns —1 multiplied by the number of transitions.
The less transitions attackers do, the less they are punished in terms

5 which can be setup on two different honeypots

of payoff. This game seems at first glance unfair regarding attackers.
If we assume that attackers want to be undiscovered while they are
doing their attack, they have already lost because they connected
to a monitored honeypot instead to real assets. The only chance
they have is to divulge less information as possible and thus try to
minimize the number of transitions.

Path probability payoff. The payoff computations purely based on
the state transitions ignores the fact whether attackers reached their
goal or not. Moreover, the payoff should take into account how
likely a path is regarding observations from a deployed honeypot.
We are looking for a payoff computation that rewards the honeypot
for blocking and that penalizes the attacker when being blocked.

The payoff for the honeypot is shown in definition |2| and the payoff for

the attacker is presented in definition [3| The probability Pr(path) de-

notes the probability of the path the attacker has chosen and Pr*(path)
denotes the probability of the most probable path from the source to the
selected destination by the attacker.

» _ Pr(path)
* = Pr(path) @
p Pr(path)
By =1- Pr*(path) ®)

The more the path probability gets close to the most probable path
probability, the payoff for the attacker converges to 1. In this case, the
payoff of the honeypot gets close to 0 which is the minimum payoff for
the honeypot. If the path of the attacker is diverted due to blocked
programs, the path probability chosen by the attacker diverges from the
most probable path probability and gets lower than the most probable
path probability. Hence, the payoff gets minimized for the attacker and
maximized for the honeypot.

3.3 Computing Payoffs with Simulations

In order to compute the payoff values for all possible combination of
strategies, we use a Monte Carlo simulation. We have built a simulator
that uses bootstrap data obtained from an operational honeypot de-
ployed over a period of 3 months. Due to computation and deployment
constraints we are forced to do simulations since, doing real world exper-
iments for all possible behaviors would require 2684 different honeypots
setups.

Honeypot Simulator Attackers and the honeypot select their strate-
gies according to a given discrete probability. These probabilities are fixed
and an attack is simulated. The simulation provides the number of tran-
sitions an attacker did, the optimal path probability, the path probability
for the attacker, the fact that the attacker left and the fact that the max-
imum number of transitions was reached. The variable src specifies the
initial state and the variable dst stands for the destination state in the

10

hierarchical probabilistic automaton. Hence, the final state probability,
required by the automaton, is 1 for the state dst and 0 for all the other
states. During a simulation, the transitions performed by an attacker
are recorded. The states, that an attacker passed through are kept in
a list. When the simulation starts, the attacker enters the initial state.
We assume that an attacker chooses the next transitions on the most
probable path. If the attacker is not blocked, the attacker follows the
same path. An attacker has a fixed goal. If this goal is reached then the
simulation ends. (src = dst). Moreover the number of transitions during
a simulation is recorded and if this number exceeds a defined threshold
the simulation ends because we want to avoid endless transitions. The
attacker can retry a command or compute the next state and the step
is recorded. The honeypot decides to block or allow this step according
to the probability Pr(Block). The attacker now decides whether to quit
or continue the game according the probability Pr(Quit). If the attacker
quits, the simulation ends. If the attacker decides to choose an alterna-
tive command, the hierarchical probabilistic automaton is modified due
to implementation issues. The probability for the blocked transition is
set to 0 and the probability for this transition is equally distributed for
all outgoing transitions. An attacker always computes the most probable
path and the same path could not be selected due to the 0 probability
transition. Of course this effect is undone for the next simulation round.
If the attacker decides to retry a command the state alternative is set
to false, the loop ends and the next round starts.

4 Experimental Evaluation

We set up a high-interaction honeypot capable to record do_exec_ve and
clone system calls. We directly patched the Linux kernel in order to
avoid a detection by address arithmetic which is an attack described by
McCarty [10]. We transmit the collected data in kernel space directly to
the hardware level in order to avoid that collected information passes
through the hands of the attacker. The honeypot is operated with the
Qemu a x86 emulator [I1I]. The kernel inside the Qemu was modified
such that process ids are logged. On the host machine this data is put in
a database. The honeypot has also an additional network interface where
system logs are transmitted to a syslog-ng server like it is the case for
current production systems. The default running service is a SSH server
which serves as entry point for attackers. We could configure the SSH
server that the PAM module pam_permit should be used. In this case
no password is asked, which may be very suspicious for attackers. Thus,
we preferred to modify the pam_unix module, which is responsible for
password authentication in a Linux operating system. With our patch,
the system asks for a password but then neglects all non-privileged user
passwords. This implementation choice is also resistant against password
changes performed by attacker, because the password is not checked
anymore. In theory an attacker could also change the PAM modules
but we did not observe this phenomenon during the operation of our
honeypot. Moreover, we observed that some attackers installed their own

shell in order to be sure that they do not use a shell with additional
monitoring features. Furthermore some attackers replaced the SSH server
on the honeypot. An alternative solution is to perform a MITM attack
in order to filter the command executed by attackers. However, from an
engineering perspective this solution requires additional efforts to become
stealthy. From this honeypot we recovered the process trees related to
attackers which are sub trees of the Unix process tree on the honeypot.
Then we transformed these process trees in process vectors. Each vector
corresponds to an attack. From the observed process vectors we created
a hierarchical probabilistic automaton to drive the simulation. Our data
sets and developed software are publicly availabl(fl.

4.1 Data Sets

The honeypot was operated on one public IPv4 address and consisted
of a Ubuntu Linux 7.10 operating system. The Linux operating system
was executed in a virtual machine operated by Qemu, version 0.9.1. We
patched the pam_unix module, version 0.99.7.1 in order to facilitate access
to the attackers and to mitigate the effects of an attacker that changed
the password of a compromised account. We extended the Linux kernel,
version 2.6.28-rc6 with the do_exec_ve and clone monitoring features.
The honeypot was operated from 2009-01-21 until 2009-03-09. In this
period we observed 637 successful ssh logins and 12140 ssh failures. De-
spite the patched pam_unix module, a high number of ssh failures was
discovered. Our pam unix module patch lets the pam_unix module ig-
nore passwords for non privileged user accounts on the honeypot. For
61% of the failed ssh attempts the root account was targeted which was
explicitly blocked by our pam_unix module patch. Besides the 13 system
accounts, we created 12 additional user accounts. Thus, we have 25 non
privileged user accounts. Attackers tested 1763 non existing accounts
with different passwords which is another explanation for the high num-
ber of SSH failures. For the successful logins we observed 183 different IP
addresses. Some attackers modified the kernel but the virtual machine
was configured in such a way that a reboot was translated into a power
off. The kernel changes are noticed because the file system of the honey-
pot was periodically mounted (loop back) and checksums were computed
to detect changes. If the kernel was changed we replaced the modified
kernel with the original.

Process Trees We recovered 637 process trees. The root of each pro-
cess tree was the privileged separated process by sshd. The smallest trees
have only one node and the tree with the maximum nodes had 1954
nodes. The small trees can be explained due to the fact that a brute
force attacks against the SSH server was performed by some attackers
with automated tools. The automated tool managed to break into the
honeypot and immediately left. The maximum length of a process tree
is due to bots that were installed on our honeypot. The bot master had

S http://quuxlabs.com/~gerard/jogy-experiment

11

http://quuxlabs.com/~gerard/jogy-experiment

12

long sessions with the bot in order to operate it. Due to data processing
capabilities we stopped to reassemble the tree if the length is longer than
100 nodes. The average number of nodes per process tree is 105 with a
standard deviation of 231.

Process Vectors Each process tree was converted in a process vec-
tor aiming to extract the program sequences done by an attacker. The
longest process vector is composed of 85 programs and the smallest one
contains only 1 program. The average process vector length is 6.16 with
a standard deviation of 2.81.

4.2 Simulation Results

The hierarchical probabilistic automaton was set up using the process
trees. We obtained 91 different programs (states). Each program is on its
own an automaton based on the command line arguments. To simplify
the automaton, we removed the first command line argument which cor-
responds to the program name in a Linux operating system. On average,
programs have 9.72 command line arguments. The program with the
most observed command line arguments has 181 arguments and some
programs have one program argument. The standard deviation of the
program arguments per program is 23.5. A large number of command
line arguments can be explained by substitutions done by the program
bash [I2]. For instance the argument * is substituted by the program
bash with a file list in the current directory. Moreover the hierarchical
probabilistic automaton contains 581 different transitions. To model un-
known or unseen transitions we smoothed the transition probabilities.
Due to the fact that in our simulator the attacker selects the path with
the highest probability, the smoothing factor is selected in such a way
that the path probabilities are not affected. We evaluated the smoothing
factor from 4.48-10715 to 4.48-10~2 which are multiples of 10 of the low-
est path probability. For each smoothing factor, we computed the average
number of transitions from the initial states (always /usr/sbin/sshd) un-
til the final states (last programs executed by attackers). In the range
of 4.48 - 10715 to 4.48 - 107° the average number of transitions remains
constant and for values larger that 4.48 - 107% the average number of
transitions linearly decreases due to the fact that an attacker can select
artificial shortcuts. We used a smoothing factor of 4.48 - 1078, which
does not change the number of average transitions and is large enough
to avoid rounding errors. The number of transitions increased to 8281
which is the square of the number of states which can be explained that
we have a fully interconnected automaton.

The hierarchical probabilistic automaton was used to simulate attacks
in order to compute the average payoff. We simulated the honeypot
strategies (Pr(Block)) and attacker strategies (Pr(Quit), Pr(Retry),
Pr(Alternative)) in a range of 0 and 1 in a step of 0.10 respecting the
relation [} In a first step we evaluate the impact of blocking system calls
of an attacker. We noticed that the average of transitions performed by
an attacker increases with the blocking probability.

In a second step, we computed Nash Equilibriums using the game the-
ory simulator Gambit [13]. Only mixed equilibriums have been found. If
we consider the first game (upper half of the table [I) then one mixed
Nash equilibrium exists: for instance, the honeypot can decide to use
either a blocking probability of 0.10 or of 0.90. It should use 0.10 in
54% of the cases and 0.9 in 46% of the cases. The attacker should use
Pr(Quit) equal to 0.3 or 0.4 with associated probabilities 0.73 and 0.27
respectively. Similarly, value choices according to the table can be set for
Pr(Retry) and Pr(Alternative). The second game, (lower half of the
table , has also a mixed equilibrium: the honeypot should use three
different blocking probabilities (0.4, 0.7, 1) with corresponding probabil-
ities 0.3, 0.51 and respectively 0.19. This is interesting, since blocking all
transitions (Pr(Block) = 1) should be done in 19% of the cases. The
attacker can also set his optimal strategies with respect to this table.

Table 1. Gambit simulation results

I I
q |Pr(Block)| q |Pr(Quit)|Pr(Retry)|Pr(Alternative)
0.54 0.1 0.73] 0.3 0.4 0.3
0.46 0.9 0.27 0.4 0.2 0.4
R}, R},
0.3 0.4 0.14 0.6 0.2 0.2
0.51 0.7 0.26| 0.8 0 0.2
0.19 1 0.6 0.8 0.1 0.1

5 Related Work

The article of McCarty [10] describes an arm race between honeypots and
attackers: attackers improve their techniques as soon as new monitoring
techniques are deployed, which furthermore leads to defenders improv-
ing their previous approach. Some researchers modified shells aiming to
observe the commands that an attacker used [2]. The major assump-
tion of such a strategy is that the attacker does not change the shell
on the honeypot. Other papers considered kernel patching [10] to miti-
gate this attack. Recently, virtualization based solutions [14] allowed to
monitor from an external point of view high-interaction honeypots. Our
operational deployment results are in line with the observations made
by Eric Alata et al. [4] and Daniel Ramsbrock et al [3]. However, we
preferred to patch the Linux authentication module PAM in order to
avoid the case where attackers can lock out other attackers by changing
the password of a compromised account. Next, we preferred to extract
the process trees related to a SSH server instead of patching SSH as it
is proposed by Eric Alata et al, because we have observed several times

13

14

that attackers changed the SSH server. Although our implementation is
based on a modified kernel running in Qemu, the conceptual approach
using game theory with high-interaction honeypots can also be used in
the context of virtualization based solutions. Garg et al. [I5] also used
game theory, where they established a different game: an attacker is re-
warded if he or she probes a real machine and punished when he or she
probes a honeypots. Bistarelli et al. [I6] propose high level attack trees
and associated attacks with countermeasures, where each action is linked
to a cost or payoff. Game theory was also used in the general context of
dependability and network security [I7] for predicting future attacks.
Our honeypot model is based on a hierarchical probabilistic automaton
bootstrapped with operational data from a high-interaction honeypot.
Attacker actions are frequently grouped in high-level attack categories
which describe the automaton [3]. Our approach is different from the
work described by Kong-wei Lye et. al [I8], because we recover the states
and the transitions probabilities from a deployed honeypot compared to
a manual definition. In order to compute the payoffs for the formal game,
we used a simulation strategy that is similar to the approach used by
Shishir et al. [19].

6 Conclusions and Future Work

This paper proposes a new paradigm for adaptive high-interaction hon-
eypots that rely on game theoretical concepts as main driving force. We
modeled the interaction between the honeypot and an attacker as a game,
where appropriate payoff functions model the behavior goals observed in
the real world. We derive the best strategies from the well known Nash
equilibrium and use operational honeypots in order to parametrize the
game model. We make the strong assumption that hackers are always ra-
tional - this might be not the case with all attackers. The obtained results
permit practical solutions for designing adaptive high-interaction honey-
pots. The adaptability is given by blocking one system call according to
the optimal blocking probabilities. We leveraged data obtained from a
deployed high-interaction honeypot in order to parametrize our model.
We plan to investigate other game theoretical models, where repetitive
and iterative learning from the past is possible. From an implementation
point of view, we are not focusing on indirect attacks: for instance, we
do not fully model attacks, where a script is added and gets executed
later by the system itself. Moreover, our automaton may be biased by the
specifics of the deployed honeypot and attackers that are aware of the
game could poison the transition probabilities. This motivates further re-
search on simplifying and comparing hierarchical probabilistic automata
from different honeypots. We also planned to compare adaptive and non
adaptive honeypots.

References

[1] Cheswick, B.: An evening with Berferd in which a cracker is lured,
endured, and studied. In: In Proc. Winter USENIX Conference.

[11]

[12]

[13]
[14]

[15]

[16]

[17]

18]

[19]

(1992) 163-174

Spitzner, L.: Honeypots: Tracking Hackers. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA (2002)

Ramsbrock, D.; Berthier, R., Cukier, M.: Profiling attacker behav-
ior following SSH compromises. In: DSN ’07: Proceedings of the
37th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, Washington, DC, USA, IEEE Computer
Society (2007) 119-124

Alata, E., Nicomette, V., Kaaniche, M., Dacier, M., Herrb, M.:
Lessons learned from the deployment of a high-interaction honey-
pot. In: Dependable Computing Conference, 2006. EDCC’06. Sixth
European. (2006) 39 — 46

Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F., Carrasco,
R.: Probabilistic finite-state machines-part I. IEEE Trans. Pattern
Anal. Mach. Intell. 27(7) (2005) 1013-1025

Mitchell, M., Samuel, A.: Advanced Linux Programming. New
Riders Publishing, Thousand Oaks, CA, USA (2001)

Love, R.: Linux Kernel Development (2nd Edition). Novell Press
(2005)

Provos, N., Friedl, M., Honeyman, P.: Preventing privilege es-
calation. In: SSYM’03: Proceedings of the 12th conference on
USENIX Security Symposium, Berkeley, CA, USA, USENIX As-
sociation (2003) 16-16

Greenwald, A.: Matrix games and nash equilibrium (2007) Lecture.
McCarty, B.: The honeynet arms race. IEEE Security and Privacy
1(6) (2003) 79-82

Bellard, F.: Qemu, a fast and portable dynamic translator. In:
ATEC ’05: Proceedings of the annual conference on USENIX An-
nual Technical Conference, Berkeley, CA, USA, USENIX Associa-
tion (2005) 41-41

Newham, C., Vossen, J., Albing, C., Vossen, J.: Bash Cookbook:
Solutions and Examples for Bash Users. O’Reilly Media, Inc. (2007)
Turocy, T.: Gambit (2007) http://gambit.sourceforge.net/.
Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether: malware analy-
sis via hardware virtualization extensions. In: CCS ’08: Proceedings
of the 15th ACM conference on Computer and communications se-
curity, New York, NY, USA, ACM (2008) 51-62

Garg, N., Grosu, D.: Deception in honeynets: A game-theoretic
analysis. In: Information Assurance and Security Workshop, 2007.
IAW ’07. IEEE SMC. (2007) 107-113

Bistarelli, S., Dall’Aglio, M., Peretti, P.: Strategic games on defense
trees. In: Formal Aspects in Security and Trust. (2006) 1-15
Sallhammar, K., Helvik, B.E., Knapskog, S.J.: A framework for
predicting security and dependability measures in real-time. Inter-
national Journal of Computer Science and Network Security 7(3)
(2007)

Lye, K.W., Wing, J.M.: Game strategies in network security. In-
ternational Journal of Information Security 4(1) (February 2005)
71-86

Nagaraja, S., Anderson, R.: The topology of covert conflict. Tech-
nical report, University of Cambridge (2005)

15

	Self Adaptive High Interaction Honeypots Driven by Game Theory
	Radu State, Alexandre Dulaunoy, Thomas Engel

