





## Spatiotemporal G-code modeling for secure FDM-based 3D printing

Muhammad Haris Rais<sup>(1)</sup>, Ye Li <sup>(2)</sup>, Irfan Ahmed <sup>(1)</sup> <sup>(1)</sup> Virginia Commonwealth University <sup>(2)</sup> Bradley University

Proceedings of the ACM/IEEE 12th International Conference on Cyber-Physical Systems. 2021 <u>https://dl.acm.org/doi/10.1145/3450267.3450545</u>

#### Outline

- Overview of additive manufacturing process
- Categories of cyberattacks
- Processes involved
- Sophos3DP framework
- Evaluation
- Future work
- Conclusion

## Additive manufacturing process chain



## Why cybersecurity of additive manufacturing?

#### New technology

- Fundamentally different
- Not designed with security in mind
- AM is a CPS

#### Industry 4.0

- AM Mass customization
- IoT
- Cloud Computing
- Big Data
- Al

#### Use Cases

- Healthcare
- Aviation
- Automobile
- 24% ACGR

#### Less security awareness

Easier access to attackers

#### Higher rewards for attackers

#### Major attack goals



#### Sabotage Attacks on 3D Printing Process

Sabotage attack's aim is to weaken, damage or destroy the printed object

#### Types of Sabotage Attacks

- Geometry Related
  - External
  - Internal
- Filament-density Related
- Timing Sequence Related
  - Anisotropy
  - Printing Speed
- Thermodynamics Related

#### Direct manipulable physical processes in FFF printing



# Sophos3DP : A framework to detect sabotage attacks

#### Sophos3DP - A Framework for Secure FDM Printing



## Data Acquisition - Kinetics

- Optical Encoders
- Rotary encoders for x,y, filament movement
- Linear encoder for printing bed
- Accumulation through Arduino

#### Pictures from our experiment on Ultimaker3 printer



Encoders => Arduino -> control PC



Rotary optical encoder deployment steps



Linear Strip Encoder for bed movement

#### Data Acquisition - Thermodynamics



Nozzle and Bed Temperature sensors

#### **Selected Sensors**

| Purpose  | Sensor     | Vendor   | Model Number      | Specs      | Resolution as       |  |
|----------|------------|----------|-------------------|------------|---------------------|--|
|          | Туре       |          |                   |            | per System          |  |
|          |            |          |                   |            | Deployment          |  |
| X-axis   | Optical-   | US Dig-  | E2-512-315-NE-H-  | 512 cy-    | 0.1 mm              |  |
|          | Rotary     | ital     | D-B               | cles/rev   |                     |  |
| Y-axis   | Optical-   | US Dig-  | E2-512-315-NE-H-  | 512 cy-    | 0.1 mm              |  |
|          | Rotary     | ital     | D-B               | cles/rev   |                     |  |
| Z-axis   | Optical-   | US Dig-  | LIN-500-9.5-N     | 500 cy-    | 0.012 mm            |  |
|          | Linear     | ital     |                   | cles/inch  |                     |  |
|          | Strip      |          |                   |            |                     |  |
| Filament | Optical-   | US Dig-  | E2-2000-315-IE-E- | 2000 cy-   | 0.0035 mm           |  |
|          | Rotary     | ital     | D-3               | cles/rev   |                     |  |
| Nozzle   | Thermo-    | Adafruit | Type-k &          | Upto 500°C | 0.25 <sup>o</sup> C |  |
| Tempera- | couple     |          | MAX31855          |            |                     |  |
| ture     |            |          |                   |            |                     |  |
| Bed Tem- | Thermistor | Omega    | SA1-TH-44006-40-  | Upto 120°C | 0.2°C               |  |
| perature |            |          | Т                 |            |                     |  |

Higher resolution sensors can be used for improved resolution

#### G-code to synthesized data set

#### Challenge

- G-code file does not mention instruction execution time
- Detection solution assumes no knowledge of firmware

Solution

- Model the printer (firmware + hardware)
  - Linear and 2<sup>nd</sup> order derivatives based interpretation of instructions
  - Error is calculated and distributed across the layer data set after every layer

222 ;TIME ELAPSED:57.715992 223 :LAYER:1 224 M140 S60 225 M106 S255 226 ;TYPE:FILL 227 ;MESH:single\_bar\_60x15x4mm\_without\_walls.stl 228 G1 F2400 X102.71 Y95.68 E24.93945 229 G1 X102.32 Y95.68 E24.94413 230 G1 X102.319 Y94.71 E24.95576 472 G0 F6000 X102.319 Y95.289 473 ;TIME ELAPSED:98.312862 474 ;LAYER:2 475 ;TYPE:FILL 476;MESH:single bar 60x15x4mm without walls.stl 477G1 F2400 X102.71 Y95.68 E42.42031 478 G1 X102.32 Y95.68 E42.42499

 $Error_{L-1} = Gcode-Time_{L-1} - Modeled-Time_{L-1}$ 

 $\mathsf{Error}_{\mathsf{L}\text{-}1}$  distributed across all data points in  $\mathsf{Dataset}_{\mathsf{L}\text{-}1}$ 

#### Algorithm: G-code file to space and time profiles

```
Output: LayerMap and TimeProfile
Input: G-code File
while (! (End of G-code File))
   pickNextInstruction()
   if(layerEnd)
      finalize(LM,TP) for CurrentLayer
       update(z_profile)
   else if (PrintingParameter)
       Update Pms // current parameter set
   else if (MoveCommand)
      Update x2, y2, e2 \leftarrow B<sub>x,ye</sub>
      LM \leftarrow pathProfile(x_1, y_1, e_1, x_2, y_2, e_2, LM,
    Pms)
       TP \leftarrow timeProfile(TP, x_2, y_2, e_2, Pms)
      Assign x_1, y_1, z_1 \leftarrow x_2, y_2, e_2
return LM, TP
```

#### G-code to Space-Domain

| ;START_OF_HEADER                       | G1 X114.244 Y116.524 E2.57157       |
|----------------------------------------|-------------------------------------|
| ;HEADER_VERSION:0.1                    | G1 X115.055 Y116.688 E2.58901       |
| ;FLAVOR:Griffin                        | G1 X115.882 Y116.781 E2.60655       |
| ;GENERATOR.NAME:Cura_SteamEngine       | M205 X6 Y6                          |
| ;GENERATOR.VERSION:4.0.0               | G0 F2100 X116.082 Y116.781          |
| ;GENERATOR.BUILD_DATE:2019-03-19       | GØ X116.096 Y117.279                |
| ;TARGET_MACHINE.NAME:Ultimaker 3       | M205 X5 Y5                          |
| ;EXTRUDER_TRAIN.0.INITIAL_TEMPERATURE: | ;TYPE:WALL-INNER                    |
| ;EXTRUDER_TRAIN.0.MATERIAL.VOLUME_USED | G1 F1500 X116.878 Y117.279 E2.62303 |
| ;EXTRUDER_TRAIN.0.MATERIAL.GUID:506c9  | G1 X117.121 Y117.28 E2.62815        |
| ;EXTRUDER_TRAIN.0.NOZZLE.DIAMETER:0.4  | G1 X117.595 Y117.229 E2.6382        |
| ;EXTRUDER_TRAIN.0.NOZZLE.NAME:AA 0.4   | G1 X117.998 Y117.184 E2.64675       |
| ;BUILD_PLATE.TYPE:glass                | G1 X118.276 Y117.129 E2.65272       |
| ;BUILD_PLATE.INITIAL_TEMPERATURE:60    | G1 X118.854 Y117.013 E2.66515       |
| ;PRINT.TIME:794                        | G1 X118.895 Y117.001 E2.66605       |
| ;PRINT.GROUPS:1                        | G1 X119.691 Y116.767 E2.68354       |
| ;PRINT.SIZE.MIN.X:106.013              | G1 X120.505 Y116.446 E2.70198       |
| ;PRINT.SIZE.MIN.Y:97.005               | G1 X120.557 Y116.42 E2.7032         |
| ;PRINT.SIZE.MIN.Z:0.27                 | G1 X121.285 Y116.054 E2.72038       |
| ;PRINT.SIZE.MAX.X:126.995              | G1 X121.305 Y116.042 E2.72087       |
| ;PRINT.SIZE.MAX.Y:117.997              | G1 X122.028 Y115.594 E2.7388        |
| ;PRINT.SIZE.MAX.Z:8.87                 | G1 X122.073 Y115.56 E2.73999        |
| ;END_OF_HEADER                         | G1 X122.726 Y115.069 E2.75721       |
| ;Generated with Cura_SteamEngine 4.0.0 | G1 X122.814 Y114.99 E2.7597         |
| 10                                     | G1 X123.376 Y114.485 E2.77562       |
| M82 ;absolute extrusion mode           | G1 X123.565 Y114.282 E2.78147       |
| C03 F0                                 | G1 X123.97 Y113.845 E2.79403        |
| G92 E0                                 | G1 X124.147 Y113.616 E2.80013       |
| M109 5210                              | G1 X124.505 Y113.156 E2.81241       |
| G280 SI                                | G1 X124.647 Y112.934 E2.81797       |
|                                        | G1 X124.977 Y112.419 E2.83086       |
| LATER_COUNT:44                         | G1 X125.112 Y112.161 E2.837         |
| jLATEN:0<br>M107                       | G1 X125.382 Y111.645 E2.84927       |
| M204 \$125                             | G1 X125.548 Y111.242 E2.85846       |
| N207 J12J                              |                                     |

| x-axis<br>(m) | y-axis<br>(m) | Time<br>(sec) | Nozzle<br>temperat<br>ure (K) | Filment<br>length<br>(mm) | Printing<br>Status |
|---------------|---------------|---------------|-------------------------------|---------------------------|--------------------|
| 0.0262        | 0.0206        | 133.806       | 478                           | 1279.644                  | 1                  |
| 0.0262        | 0.0207        | 133.809       | 478                           | 1279.645                  | 1                  |
| 0.0262        | 0.0208        | 133.811       | 478                           | 1279.646                  | 1                  |
| 0.0262        | 0.0209        | 133.813       | 478                           | 1279.647                  | 1                  |
| 0.0262        | 0.021         | 136.975       | 478                           | 1280.539                  | 1                  |
| 0.0262        | 0.0211        | 136.977       | 478                           | 1280.54                   | 1                  |
| 0.0262        | 0.0212        | 136.978       | 478                           | 1280.541                  | 1                  |
| 0.0262        | 0.0213        | 136.979       | 478                           | 1280.542                  | 1                  |
| 0.0262        | 0.0214        | 136.98        | 478                           | 1280.543                  | 1                  |
| 0.0262        | 0.0215        | 136.982       | 478                           | 1280.544                  | 1                  |
| 0.0262        | 0.0216        | 139.523       | 478                           | 1281.455                  | 1                  |
| 0.0262        | 0.0217        | 139.524       | 478                           | 1281.457                  | 1                  |
| 0.0262        | 0.0218        | 139.525       | 478                           | 1281.458                  | 1                  |
| 0.0262        | 0.0219        | 139.526       | 478                           | 1281.459                  | 1                  |
| 0.0262        | 0.022         | 139.527       | 478                           | 1281.46                   | 1                  |
| 0.0262        | 0.0221        | 139.529       | 478                           | 1281.461                  | 1                  |
| 0.0262        | 0.0222        | 139.53        | 478                           | 1281.462                  | 1                  |
| 0.0262        | 0.0223        | 54.613        | 478                           | 1247.71                   | 1                  |
| 0.0262        | 0.0224        | 54.609        | 478                           | 1247.709                  | 1                  |
| 0.0262        | 0.0225        | 54.606        | 478                           | 1247.708                  | 1                  |
| 0.0262        | 0.0226        | 54.603        | 478                           | 1247.707                  | 1                  |
| 0.0262        | 0.0227        | 54.601        | 478                           | 1247.705                  | 1                  |
| 0.0262        | 0.0228        | 79.442        | 478                           | 1259.976                  | 1                  |
| 0.0262        | 0.0229        | 79.442        | 478                           | 1259.976                  | 1                  |
| 0.0262        | 0.023         | 79.442        | 478                           | 1259.976                  | 1                  |
| 0.0262        | 0.0231        | 79.442        | 478                           | 1259.976                  | 1                  |
| 0.0262        | 0.0232        | 141.404       | 478                           | 1275                      | 1                  |
| 0.0262        | 0.0233        | 141.404       | 478                           | 1275                      | 0                  |
| 0.0262        | 0.0224        | 141 404       | 479                           | 1275                      | 0                  |

#### Go Back To Framework

#### Sensors data to time and space domain profile

- Alignment move
  - (Δx > 0 | | Δy > 0 ) & Δe ==0
- Extrusion move
  - (Δx > 0 | | Δy > 0 ) & Δe > 0
- Filament moves much slower than x/y motors
- Is this an extrusion and alignment move?
- Sampling rate: the higher the better ?



 $FS_{t1} = a; FS_{t2} = a; FS_{t3} = a'; FS_{t3} = a'$ 

- Solution:
  - Higher resolution sensors for low speed axis
  - Dual sampling rate introduced
  - High sampling to track nozzle movement
  - Low sampling to establish the filament extrusion state
  - Sampling rates
    - covers the printing speed limits
    - Acquisition system capacity

#### Raw sensors data to time domain

| Starting<br>Marker | Time (ms) | X-axis<br>(mm) | Y-axis<br>(mm) | Z-axis<br>(mm) | Filament<br>Consumed<br>(mm) | Nozzle<br>Temperature<br>(C ) | Bed<br>Temperature<br>(C ) | Ending<br>Markei |   |
|--------------------|-----------|----------------|----------------|----------------|------------------------------|-------------------------------|----------------------------|------------------|---|
| S                  | 378200.03 | 201.58         | 302.66         | 9.59           | 88.8                         | 198.75                        | 59.5                       | Т                |   |
| S                  | 378205.15 | 201.7          | 302.54         |                |                              |                               | 1                          | Т                |   |
| S                  | 378210.09 | 201.84         | 302.42         |                |                              |                               | $\backslash$               | Т                |   |
| S                  | 378215.03 | 201.97         | 302.28         |                |                              |                               | $\backslash$               | Т                |   |
| S                  | 378220.09 | 202.11         | 302.15         |                | _                            |                               |                            | -                |   |
| S                  | 378225.09 | 202.23         | 302.01         | •              | — Fasi                       | t Samples                     | steady Sa                  | mples            |   |
| S                  | 378230.12 | 202.34         | 301.89         |                |                              |                               | /                          | т                | N |
| S                  | 378235.03 | 202.46         | 301.8          |                |                              |                               |                            | Т                |   |
| S                  | 378240.09 | 202.48         | 301.74         |                |                              |                               |                            | Т                |   |
| S                  | 378245.09 | 202.27         | 301.74         |                |                              |                               | *                          | Т                |   |
| S                  | 378250.09 | 202.05         | 301.74         | 9.59           | 88.814                       | 198.75                        | 59.5                       | Т                |   |
| S                  | 378255.09 | 201.97         | 301.76         |                |                              |                               |                            | Т                |   |
| S                  | 378260.06 | 201.95         | 301.78         |                |                              |                               |                            | Т                |   |
| S                  | 378265.12 | 201.95         | 301.82         |                |                              |                               |                            | Т                |   |
| S                  | 378270.03 | 201.91         | 301.85         |                |                              |                               |                            | Т                |   |
| S                  | 378275.12 | 201.84         | 301.91         |                |                              |                               |                            | Т                | V |
| S                  | 378280.03 | 201.76         | 301.99         |                |                              |                               |                            | Т                |   |
| S                  | 378285.06 | 201.68         | 302.07         |                |                              |                               |                            | т                |   |
| S                  | 378290.12 | 201.6          | 302.17         |                |                              |                               |                            | Т                |   |
| S                  | 378295.03 | 201.5          | 302.25         |                |                              |                               |                            | Т                |   |
| S                  | 378300.03 | 201.39         | 302.36         | 9.59           | 88.825                       | 198.75                        | 59.5                       | т                |   |
| S                  | 378305.25 | 201.27         | 302.48         |                |                              |                               |                            | Т                |   |

|   | Time<br>(sec) | x-axis<br>(m) | y-axis<br>(m) | Nozzle<br>temperat<br>ure (K) | Filment<br>length<br>(mm) | Printing<br>Status |
|---|---------------|---------------|---------------|-------------------------------|---------------------------|--------------------|
|   | 0             | 0.068         | 0.003         | 477.62                        | 0                         | 1                  |
|   | 0             | 0.068         | 0.003         | 477.62                        | 0                         | 1                  |
|   | 0.05          | 0.067         | 0.003         | 477.62                        | 0.014                     | 1                  |
|   | 0.1           | 0.066         | 0.003         | 477.62                        | 0.029                     | 1                  |
|   | 0.15          | 0.065         | 0.003         | 477.62                        | 0.039                     | 1                  |
|   | 0.2           | 0.064         | 0.003         | 477.62                        | 0.053                     | 1                  |
|   | 0.25          | 0.063         | 0.003         | 477.62                        | 0.068                     | 1                  |
|   | 0.3           | 0.062         | 0.003         | 477.62                        | 0.082                     | 1                  |
|   | 0.35          | 0.061         | 0.003         | 477.62                        | 0.085                     | 1                  |
|   | 0.355         | 0.0609        | 0.003         | 477.62                        | 0.087                     | 1                  |
|   | 0.36          | 0.0608        | 0.003         | 477.62                        | 0.09                      | 1                  |
|   | 0.365         | 0.0607        | 0.003         | 477.62                        | 0.093                     | 1                  |
|   | 0.37          | 0.0606        | 0.003         | 477.62                        | 0.095                     | 1                  |
| • | 0.375         | 0.0605        | 0.003         | 477.62                        | 0.098                     | 1                  |
|   | 0.38          | 0.0604        | 0.003         | 477.62                        | 0.101                     | 1                  |
|   | 0.385         | 0.0603        | 0.003         | 477.62                        | 0.103                     | 1                  |
|   | 0.39          | 0.0602        | 0.003         | 477.62                        | 0.106                     | 1                  |
|   | 0.395         | 0.0601        | 0.003         | 477.62                        | 0.109                     | 1                  |
|   | 0.4           | 0.06          | 0.003         | 477.62                        | 0.111                     | 1                  |
|   | 0.405         | 0.0599        | 0.003         | 477.62                        | 0.113                     | 1                  |
|   | 0.41          | 0.0598        | 0.003         | 477.62                        | 0.114                     | 1                  |
|   | 0.415         | 0.0597        | 0.003         | 477.62                        | 0.116                     | 1                  |
|   | 0.42          | 0.0596        | 0.003         | 477.62                        | 0.117                     | 1                  |
|   | 0.425         | 0.0595        | 0.003         | 477.62                        | 0.119                     | 1                  |
|   | 0.43          | 0.0594        | 0.003         | 477.62                        | 0.12                      | 1                  |
|   | 0.435         | 0.0593        | 0.003         | 477.62                        | 0.122                     | 1                  |
|   | 0.44          | 0.0592        | 0.003         | 477.62                        | 0.123                     | 1                  |
|   | 0.445         | 0.0591        | 0.003         | 477.62                        | 0.125                     | 1                  |
|   | 0.45          | 0.059         | 0.003         | 477.62                        | 0.126                     | 1                  |

#### Raw sensors data to space domain

| Starting<br>Marker | Time (ms) | X-axis<br>(mm) | Y-axis<br>(mm) | Z-axis<br>(mm) | Filament<br>Consumed<br>(mm) | Nozzle<br>Temperature<br>(C ) | Bed<br>Temperature<br>(C ) | Ending<br>Markei |    |
|--------------------|-----------|----------------|----------------|----------------|------------------------------|-------------------------------|----------------------------|------------------|----|
| S                  | 378200.03 | 201.58         | 302.66         | 9.59           | 88.8                         | 198.75                        | 59.5                       | Т                |    |
| S                  | 378205.15 | 201.7          | 302.54         |                |                              |                               |                            | Т                |    |
| S                  | 378210.09 | 201.84         | 302.42         |                |                              |                               | $\backslash$               | Т                |    |
| S                  | 378215.03 | 201.97         | 302.28         |                |                              |                               | $\backslash$               | Т                |    |
| S                  | 378220.09 | 202.11         | 302.15         |                | _                            |                               |                            | -                |    |
| S                  | 378225.09 | 202.23         | 302.01         | ◀              | — ⊦asi                       | t Samples                     | steady Sa                  | mples            |    |
| S                  | 378230.12 | 202.34         | 301.89         |                |                              |                               | /                          | Т                | λ. |
| S                  | 378235.03 | 202.46         | 301.8          |                |                              |                               |                            | Т                |    |
| S                  | 378240.09 | 202.48         | 301.74         |                |                              |                               |                            | Т                | `  |
| S                  | 378245.09 | 202.27         | 301.74         |                |                              |                               | *                          | Т                |    |
| S                  | 378250.09 | 202.05         | 301.74         | 9.59           | 88.814                       | 198.75                        | 59.5                       | Т                |    |
| S                  | 378255.09 | 201.97         | 301.76         |                |                              |                               |                            | Т                |    |
| S                  | 378260.06 | 201.95         | 301.78         |                |                              |                               |                            | Т                |    |
| S                  | 378265.12 | 201.95         | 301.82         |                |                              |                               |                            | Т                |    |
| S                  | 378270.03 | 201.91         | 301.85         |                |                              |                               |                            | Т                |    |
| S                  | 378275.12 | 201.84         | 301.91         |                |                              |                               |                            | Т                | V  |
| S                  | 378280.03 | 201.76         | 301.99         |                |                              |                               |                            | т                |    |
| S                  | 378285.06 | 201.68         | 302.07         |                |                              |                               |                            | Т                |    |
| S                  | 378290.12 | 201.6          | 302.17         |                |                              |                               |                            | Т                |    |
| S                  | 378295.03 | 201.5          | 302.25         |                |                              |                               |                            | т                |    |
| S                  | 378300.03 | 201.39         | 302.36         | 9.59           | 88.825                       | 198.75                        | 59.5                       | т                |    |
| S                  | 378305.25 | 201.27         | 302.48         |                |                              |                               |                            | т                |    |

| x-axis<br>(m) | y-axis<br>(m) | Time<br>(sec) | Nozzle<br>temperat<br>ure (K) | Filment<br>length<br>(mm) | Printing<br>Status |
|---------------|---------------|---------------|-------------------------------|---------------------------|--------------------|
| 0.0044        | 9.00E-04      | 3.67          | 478                           | 1.087                     | 1                  |
| 0.0044        | 0.001         | 3.67          | 478                           | 1.087                     | 1                  |
| 0.0044        | 0.0011        | 25.465        | 479                           | 8.226                     | 1                  |
| 0.0044        | 0.0012        | 25.465        | 479                           | 8.226                     | 1                  |
| 0.0044        | 0.0013        | 25.465        | 479                           | 8.226                     | 1                  |
| 0.0044        | 0.0014        | 25.465        | 479                           | 8.226                     | 1                  |
| 0.0044        | 0.0015        | 25.465        | 479                           | 8.226                     | 1                  |
| 0.0044        | 0.0016        | 999           | 295                           | 0                         | 0                  |
| 0.0044        | 0.0017        | 43.27         | 478                           | 12.183                    | 1                  |
| 0.0044        | 0.0018        | 43.27         | 478                           | 12.183                    | 1                  |
| 0.0044        | 0.0019        | 43.27         | 478                           | 12.183                    | 1                  |
| 0.0044        | 0.002         | 43.27         | 478                           | 12.183                    | 1                  |
| 0.0044        | 0.0021        | 43.27         | 478                           | 12.183                    | 1                  |
| 0.0044        | 0.0022        | 43.255        | 478                           | 12.178                    | 1                  |
| 0.0044        | 0.0023        | 43.435        | 478                           | 12.217                    | 1                  |
| 0.0044        | 0.0024        | 43.435        | 478                           | 12.217                    | 1                  |
| 0.0044        | 0.0025        | 43.435        | 478                           | 12.217                    | 1                  |
| 0.0044        | 0.0026        | 43.435        | 478                           | 12.217                    | 1                  |

Go Back To Framework

#### Sophos3DP space domain representation



Camera image of the printed part



Image generated by Sophos3DP from the sensors data set (single layer)

#### **Process analysis**

- Pixel for pixel || sample for sample mapping?
- Three distinct view points
  - ► Time domain
  - Space domain
  - ► G-code instruction
- Evaluation carried out after each layer is printed

| Aspects to Analyze             | Features                                                  |
|--------------------------------|-----------------------------------------------------------|
| Layer Geometry                 | Dimensions, Shape                                         |
| Filament Consumption           | Per layer, Per region, per G-code command                 |
| Z-profile                      | Layer Thickness                                           |
| Timing Profile                 | Toolpath Sequence, Speed                                  |
| Thermal Profile                | Nozzle Temperature, Bed Temperature                       |
| G-code Command<br>Verification | Vertices, Path, Filament Consumption,<br>Command Sequence |

#### Algorithm : G-code commands verification

Output: G-code commands integrity status Input: G-code file , SensorData Synchronize sample series "S" with 1<sup>st</sup> command>1mm: move from A to B ∀ i ∈ SampleSequence

 $\forall i \in SampleSequence$ 

Assume 
$$s_i = A$$
, if  $\exists s_j$  s.t.  
 $|d_{i,j} - |AB|| \le th_{vertex} //$  ie. B in vicinity of  $(s_j)$   
AND  $slope_{AB} \equiv slope(s_i, s_j)$   
if  $s_j$  NotFound  $\rightarrow$  return: **Sync Failed**  
else **Sync Achieved**, **Verify Individual Cmds**  
 $\forall k \in Gcode_Mov_Cmds:$   
Find sample  $s_i$  corresponding to vertex A  
if A found:

refineVertex(A)  $\rightarrow$  s<sub>i</sub>

while B found: Chronologically test fol 1.  $d(s_{i+1} - B) \le d(s_i - B)$ 2.  $dist (s_i -AB) \le th_{point \ 2line}$ if B found: refineVertex(B) $\rightarrow sj$ else: return "**Cmd k failed** due to {Reason}" // Filament consumption test // if ((e(s\_j)-e(s\_i)) - (e\_B - e\_A)) \le th\_{filament} "**Cmd k Verified**" else return Cmd k failed due to {Reason}

return "Cmd verification test passed"

#### Attack verdict processing

#### Challenges

- Physical process has tolerances
- Measurement errors
- Slicer software estimation errors
- Modeling approximation errors
- Our approach
  - Print a set of various benign objects
  - Tweak the alert thresholds to ensure zero FP [each feature is already calibrated]
  - Print a set of attacked samples with high magnitude deviations
  - Gradually reduce the magnitude of attack parameter to the boundary of zero FN
  - Set of parameter values corresponding to zero FP and zero FN represents Sophos3DP performance

#### Sophos3DP detection thresholds

- Printed objects of various shapes / infills / speeds / other printing parameters
- Find out deviations b/w sensors data and corresponding G-codes
- Alert thresholds relaxed till the achievement of zero False Positives
- For a 5 cm x 5 cm-> 2500 mm<sup>2</sup>, 1 mm<sup>2</sup> deviation is 0.04 %

| S   | Performance Parame-         | Related At-    | Alert Thresholds                            |
|-----|-----------------------------|----------------|---------------------------------------------|
| /No | ters                        | tack           |                                             |
| 1   | Single Mismatched Area      | Geometry       | $1 \text{ mm}^2$                            |
| 2   | Cumulative mismatched       | Geometry       | 2% per layer, min dimen-                    |
|     | area                        |                | sion >0.2 mm                                |
| 3   | Nozzle Temperature Devia-   | Thermo-        | 5°C                                         |
|     | tion                        | dynamics       |                                             |
| 4   | Time window for sample      | Timing Profile | 2 seconds                                   |
|     | search                      |                |                                             |
| 5   | Samples Mismatch per        | Timing Profile | 2%                                          |
|     | Layer                       |                |                                             |
| 6   | Continuous Mismatch Du-     | Timing Profile | 500 ms                                      |
|     | ration                      |                |                                             |
| 7   | Max Layer Thickness Differ- | Geometry       | 0.05 mm for 500 ms                          |
|     | ence                        |                |                                             |
| 8   | Bed Temperature Differ-     | Thermo-        | 5 <sup>o</sup> C for 500 ms                 |
|     | ence                        | dynamics       |                                             |
| 9   | Filament Consumption De-    | Density, Geom- | 5% diff per move                            |
|     | viation per move            | etry           |                                             |
| 10  | Filament Consumption De-    | Density, Geom- | 1% diff per layer                           |
|     | viation per Layer           | etry           |                                             |
| 11  | Max Nozzle Deviation        | Geometry       | $0.75 \text{ mm} \perp \text{to move path}$ |
| 12  | Max Vertex Deviation        | Geometry       | 0.75 mm                                     |

#### Performance of detection algorithms

| Attack                | Attack Mechanism                                          | Parameters Impacted                                            |   | orithm<br>formai | s<br>nce * | Final Result and<br>Performance                                       | Existing State of the<br>Art                                          |
|-----------------------|-----------------------------------------------------------|----------------------------------------------------------------|---|------------------|------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|
| 1 ype                 |                                                           | -                                                              | 1 | 2                | 3          | Description                                                           |                                                                       |
| Filament<br>Status    | Switched off extruder<br>motor for 1 infill<br>command    | Filament consumption<br>Space layout<br>Timing Synchronization | ~ | ~                | ~          | Detected (100ms+)<br>1% filament deviation /<br>layer, 5% per command | Not Detected                                                          |
| Filament<br>Density   | Reduced the filament<br>consumption for 2 infill<br>lines | Filament consumption<br>Space layout<br>Timing Synchronization | ~ | 1                | ~          | Detected<br>1% deviation per layer,<br>5% per command                 | Not Detected                                                          |
| Nozzle<br>Temperature | Changed nozzle<br>temperature by ±10C                     | Nozzle temperature profile                                     | ~ | ~                | ×          | Detected; Capable to<br>detect lower deviations                       | Not Detected                                                          |
| Bed<br>Temperature    | Changed bed<br>temperature by ±5C                         | Bed temperature profile                                        | × | ~                | ×          | Detected                                                              | Not Detected                                                          |
| Infill Pattern        | Line/Triangle/Grid/<br>Gyroid                             | Space layout<br>Timing Synchronization                         | ~ | ~                | ~          | Detected                                                              | Detected [13]                                                         |
| Infill<br>Density     | 20%,21%, 30%, 31%,<br>40%,41%                             | Space layout<br>Timing Synchronization                         | 1 | ~                | 1          | Detected; 1% verified;                                                | Presented case: 10%<br>deviation [15]<br>Any deviation > 1sec<br>[12] |

1: Space domain analysis; 2: Time domain analysis; 3: G-code command verification

| H                                                                                                     |                                                                                            | 1                                           | 1 | - | 1 | 1                                                                                                    |                                                                                    |
|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------|---|---|---|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Layer<br>Thickness                                                                                    | Changed z-move from 0.2 mm to 0.1 mm                                                       | Z-axis Synchronization                      | × | 1 | × | Detected                                                                                             | 0.1mm with multiple<br>sensors [17] OR if<br>repeated over multiple<br>layers [16] |
| Geometry<br>limits<br>(x <sub>min</sub> , y <sub>min</sub> –<br>x <sub>max</sub> , y <sub>max</sub> ) | Changed outer<br>dimensions by ±0.3mm<br>over one axis                                     | Space layout                                | ~ | × | ~ | Detected; verified<br>General rule: 1mm <sup>2</sup><br>single area or 2% total<br>mismatch          | Not addressed as a<br>benchmark                                                    |
| Cavity                                                                                                | No cavity, 1x1mm,<br>2x2mm, 3x2mm,<br>3x3mm cavities                                       | Space integrity<br>Timing Synchronization   | ~ | 1 | ~ | Detected                                                                                             | 4 mm over one axis<br>[17]                                                         |
| Toolpath<br>Sequence                                                                                  | Sequence of 3 move<br>commands modified<br>(total $\Delta t < 1$ sec)                      | Relative toolpath deviation                 | × | × | ~ | Detected, if vertices<br>distance > 1mm ;<br>$\Delta t < 1$ sec is detectable                        | $\Delta t \ge 2.26 \text{ sec } [12]$                                              |
| Toolpath<br>Add / Delete                                                                              | Single command ( < 1<br>sec, 2mm) with no<br>extrusion                                     | Space layout<br>Relative toolpath deviation | ~ | × | ~ | Detected, if distance > 1mm                                                                          | 1 sec duration<br>(translated to >10 mm)<br>[12]                                   |
| Toolpath<br>Add / Delete                                                                              | Two short commands<br>'to &fro' (< 1sec, 2mm)<br>with no extrusion                         | Relative toolpath deviation                 | × | × | ~ | Detected; if distance > 1mm                                                                          | Not presented; we<br>assume 1 sec (as above)                                       |
| Toolpath<br>Add / Delete                                                                              | Multiple consecutive<br>small (<1mm)<br>commands sequence<br>lasting for over 2 sec        | Timing Synchronization                      | × | ~ | × | Detected, if cumulative<br>distance of single seq ><br>1 mm<br>OR if $\Sigma$ ( $\Delta t$ ) > 2 sec | Not presented; we<br>assume 1 sec (as above)                                       |
| Printing<br>Speed                                                                                     | w/o modifying the path,<br>changed the printing<br>speed to create 2<br>seconds difference | Timing Synchronization                      | × | ~ | × | Detected, as and if<br>cumulative time<br>difference > 2 sec                                         | $\Delta v \ge \pm 25 \text{mm/s} [17]$<br>0.8 sec [12]                             |

1: Space domain analysis; 2: Time domain analysis; 3: G-code command verification

Sophos3DP Evaluation

#### Sophos3DP Performance on Test Attacks

- 16 different types of attacks conducted
- Patterns and design files were changed BUT attack magnitudes kept bigger than the detection capability
- All attacks successfully detected

| Attack Name          | Attack Mechanism                                         | Affected |  |  |
|----------------------|----------------------------------------------------------|----------|--|--|
|                      |                                                          | Domain   |  |  |
| Filament status      | Switch off the extruder for 1 infill command             | FK       |  |  |
| Filament density     | Reduce the filament speed for 2 infill lines             | FK       |  |  |
| Filament-kinetic     | Retract the filament for 2 infill lines 2 mm long, FK,   |          |  |  |
| based cavity         | Path change:Nil; Time Diff:0.4 sec                       | minimal  |  |  |
| Nozzle temperature   | Change the nozzle temperature by $\pm 10^{\circ}$ C in   | THM      |  |  |
|                      | central region of rectangular bar                        |          |  |  |
| Bed temperature      | Change the bed temperature by 6 <sup>o</sup> C           | THM      |  |  |
| Infill pattern       | Swap among the Line/Triangle/Grid or other               | FK, NK   |  |  |
|                      | infill patterns                                          |          |  |  |
| Infill density       | Change infill density from 20% to 21% ; 30% to           | FK, NK   |  |  |
|                      | 31% ; 40% to 41% (1% change at different density         |          |  |  |
|                      | levels)                                                  |          |  |  |
| Z-axis 1 layer       | Change layer thickness of a single layer by 0.1          | ZK       |  |  |
|                      | mm                                                       |          |  |  |
| Z-axis multiple lay- | Change thickness of three layers by 0.04 mm              | ZK       |  |  |
| ers                  | each                                                     |          |  |  |
| Outer geometry       | Change outer dimensions by 0.3 mm for a single           | FK, NK   |  |  |
|                      | axis                                                     |          |  |  |
| Cavity via design    | Create a cavity of 1x1 mm, 2x2 mm, 3x2 mm                | FK, NK   |  |  |
| file                 | through design file                                      |          |  |  |
| Path sequence        | Modify 3 mov cmds, $\Delta$ t <1sec                      | FK, NK   |  |  |
| Add/delete single    | Add 2 mm long, <1 sec cmd w/o extrusion                  | FK, NK   |  |  |
| move                 |                                                          |          |  |  |
| Add/delete 2 moves   | Add 2 cmds of 2 mm and under 1sec duration               | FK, NK   |  |  |
|                      | w/o filament extrusion [A>B, B>A]                        |          |  |  |
| Add/delete multiple  | Insert multiple cmds <1 mm each, lasting for 2           | NK       |  |  |
| small moves          | secs                                                     |          |  |  |
| Printing speed       | Change printing speed to cause $\Delta t \ge 2$ sec, w/o | FK, NK   |  |  |
|                      | path change                                              |          |  |  |

#### Cavity Attack based on Design Change

- Change in design stage results in BIG attack footprint
  - G-code commands sequence
  - Space domain layout
  - Timing profile
  - Filament-kinetic profile





Intermediate Layer - Original File

Intermediate Layer - After Attack

#### **Cavity Attack based on Filament Kinetics**



## Final printed object has no visible deformation

Cavity seen during the printing - picture taken after printing is paused



Bitmap image generated from the G-code file

Bitmap image generated from the sensors data

#### **Thermodynamic Attacks**

- Planned temperature variations can induce thermal stresses in the object
- Two attack variations
  - Increasing the temperature
  - Reducing the temperature





#### Toolpath Re-sequence Attack

- Toolpath sequence is important parameter in FDM
- Tested Sophos3DP on very small change
  - 3 commands creating corner triangle re-sequenced
- Detects on the first modified command



(a) Original Sequence Trace

# Future Work

#### Future Work - Sophos3DP+

- Monitoring direct manipulable processes Missing elements
- Attack may not be detectable in one layer
  - > XZ, YZ, any other plane or not confined to a plane
- Features not incorporated in G-codes



#### Conclusion

- Sophos3DP is a modular integrity checking framework
- It utilizes ubiquitous sensors to attain printing state independent of the process chain
- Deploys multi-domain analysis to detect inconspicuous attacks
- No machine learning or profile generation required for new objects
- Aligned with Industry 4.0 vision of mass customization
- Future directions







# Thanks!!

## **Questions?**

Presenter:Muhammad Haris Raisraismh@vcu.eduYe Liyli@bradley.eduIrfan Ahmediahmed3@vcu.edu