Specification of AIM Crypto
!|_ Engines

Mark Tullsen
John Launchbury
Thomas Nordin

Oregon Graduate Institute

‘_H Road Map

—> =m AIM Overview
= Specifying Cryptographic Algorithms
= Block Ciphers on the PCE
= Stream Ciphers on the CCE

s Verification
= Summary

= Motorola AIM
(Advanced INFOSEC Machine)

i By
% i
Saall
_ i = On-board encryption engines
: = MASK technology
(Mathematically Assured Separation Kernel)
= Physically tamper-proof
siiddiiiiiiiaiiiiiiin

www.motorola.com/GSS/SSTG/ISSPD/Embedded/AIM/

*AIM Architecture

-

=)

:H Road Map

= AIM Overview
= Specifying Cryptographic Algorithms

=) = Block Ciphers on the PCE (previous work)
= A DSL! for permutations and S-boxes

= Stream Ciphers on the CCE
= A DSL for bit-functions and feedback shift registers

» Verification
= Summary

1 DSL — Domain Specific Language

:H PCE Architecture (Simplified)

= Execution components

= APFU (Permutation Function

Memory Unit)
Access

Registers

= 16 predefined permutations
t = NLU (Non-Linear Unit)
= 16 one-bit memories
= Independently addressable
= LFU (Linear Function Unit)

= XOR unit
= ALU

:H A Recipe for a DSL

= Identify an abstraction (or Abstract Data Type)
= Think “values” (functionally, not procedurally):
= Yes: integers, complex humbers, polynomials, sequences, etc.
= No: linked-list, arrays, pointers, etc.
= Develop compositional operators for it
= Question: How can we create primitive values?
= Question: How can we produce new values from old?

= Look for natural algebraic laws
= Aids design of abstractions & operators
= Provides understanding of the operators

‘_H Permutations (Abstraction No. 1)

= Sequence of numbers K

= Numbered left to right
= Beginning at 1
= Examples 1 2 3 4 5 6

= [4111213]
= [2141212141316]
= [8111714111513]

= Permutations can be any
size

= 16 or 32 bits is common %

‘_H “into’ Operator

= Pipe the output of one
permutation into the input of
another

= Like function composition

8 2 o6 2 2 4 2
[2/4/212/41316]

(8,1,7,4,1,5,3]
[

8,2,6,2,2,4,2]

++ Operator

permutations together,] 2 4+ s 2

side by side

= Each permutation
draws from the same

[7,3,1,6]

input bits
= Obtained simply by (2,4,8,2] ++
appending the two = [2,4,8,2,7,3,1,6]

sequences together

‘_H More Operations

xs “select’ [n..m]
Selects bits n through m from xs

Xs << n

Rotate xs left by n
Xs >>> n

Rotate xs right by n
pad n xs

Pad xs on left to be n-bits wide
Xxs beside ys

Combine xs and ys in parallel
size xs

The number of bits output by xs (length of sequence)

‘_H Permutation Laws

s Size

size (xs ++ ys)

size xs + size ys

size (xs beside ys) = size xs + size ys
size (xs into ys) = size ys
size (pad n xs) = n
= Rotating
(xs >>> m) >>> n = xs >>> m+n
(xs <K< m) <K<K n = xs << m+n
xs >>> 0 = xs
Xxs << 0 = xs

(xs >>> m) <<< n =
if m > n then xs >>> (m-n) else xs <<< (n-m)

Laws (2)

‘_H Permutation

= into
[1..] "into xs XS
Xs into [l..size xs] = xs
xs into (ys ++ zs) = (xs "into ys) ++ (xs "into zs)
Xs ‘into’ (ys <K< n) = (xs "into ys) <<< n
Xs ‘into’ (ys >>> n) = (xs "into ys) >>> n

= Associativity
(xs ++ ys) ++ zs

(xs "beside ys)

(xs "select ys)

= xs ++ (ys ++ zs)

"beside” zs

= XS

"select’ zs

= XS

"beside’

"select’

(ys

(ys

"beside’

"select’

Zs)

ZSs)

‘_H S-boxes (Abstraction No. 2)

= Every crypto-algorithm needs non-linear components
= Multiplication (RC6)
= Galois field inversion (Rijndael)
= DES has 8 separate S-boxes; each 6-bit in, 4-bit out

—>
—> —>
—> —>
—> —>
—> —>
—>

= An S-box is an arbitrary function combined with a
“addressing permutation”

‘_H S-box Operations & Laws

= Creating S-boxes:
sbox :: Perm -> Int -> [Integer] -> Sbox

= Combining S-boxes:

pack :: Perm -> [Sbox] -> Sbox
extend :: [Sbox] -> Sbox
intoS :: Perm -> Sbox -> Sbox

= Laws:

p intoS (sbox g n xs) = sbox (p into g) n xs

:H Road Map

s AIM Overview

= Specifying Cryptographic Algorithms
= Block Ciphers on the PCE
= A DSL for permutations and S-boxes

= = Stream Ciphers on the CCE
= A DSL for bit-functions and feedback shift registers

» Verification
= Summary

:H CCE Architecture (Simplified)

Micro-
Sequencer

Cryptographic
Coprocessor

Control Regs.

v

>
>

State Regs.

v

-

Configurable
Logic

~

\

Micro-sequencer
= Simple RISC architecture
« Interfaces with Crypto Controller

= Controls Cryptographic
Coprocessor

Cryptographic Coprocessor
= Control Registers
= State Registers

= Configurable Logic

= The difficulty of programming
the CCE lies in specifying this

‘_H Bit-Functions (Abstraction No. 3)

= Permutations allow for moving bits around

1 2 3 4

iy

4 1 2 3

s Bit-Functions allow for Boolean functions

1 2 3 4

i

16&4 3114

‘_H Bit-Function Examples

= Rotate (4 to 4 Bit-Function)
[4,1,2,3]

= Note: All permutations are Bit-Functions!
= Odd Parity (4 to 1 Bit-Function)

[1 “xor> 2 ‘xor 3 “xor 4]
= [Two Bit Adder (4 to 2 Bit-Function)

[1 "xor 3
, 2 xor 4 "xor (1 && 3)
]

‘_H Bit-Function Operations

= Permutation operations extend to Bit-Functions:
= into’
s ++
= Select’
n <<<L, >>>
= pad
= beside’
= Size

‘_H Bit-Function Operations

= Operations on “Input Bits":
« Standard Boolean operators (overloaded):
1&& 2,112 ..
= Additional operators:
true, false, ite 12 3, 1 "xor 2, ...

= Bit-Function Operations:
ites b [x1,x2,...] [y1,y2,...] = [ite bx1 yl, ite b x2 Y2, ...]

:H Bit-Function Laws

s Permutation laws extend to Bit-Functions
(xs >>> m) >>> n = Xxs >>> m+n

= Boolean laws apply to each “bit”
[1 && true] = [1]

= Bit-Function Laws
ites a (ites b xs ys) zs =
ites b (ites a xs zs) (ites a ys zs)

A Common Structure
‘_H in Stream Ciphers

= Feedback Shift Register (FSR)

b, | b, | b, Co. b .| b |—»
Ei I I

| Feedback Function |
= Generalized FSR
v v v v v
b, | b, | b, Co.

bn—l bn f \
¥ Output
¥ Function
AR A vV L)

Feedback Function

T 1]]

Generalized FSR

‘_H (Abstraction No. 4)

= FSR = (next,output,inputWidth)

next :: BitFunction

output :: BitFunction

inputWidth :: Int

(Q x I — Q)

(Q = 0O)

0 <«
[
R

next

» output

‘_H FSR Compared to Moore Machine

= Moore Machine:

= Q = set of states

s I = set of inputs

= O = set of outputs

= g0 Q = initial state

= next ::QxI— Q = nextstate function
= output:: Q > O = output function

= FSR Differences:
= FSR has no initial state
= State (Q) represented as a bit-vector, not arbitrary set
= Input and output (I and O) are bit-vectors, not sets

‘_H FSR Operators: Basic Three

= compose :: FSR -> FSR -> FSR (ab)

—» o —

= cycle :: FSR -> FSR (a*)

= parallel :: FSR -> FSR -> FSR (alb)

—> >

—> >

‘_H More FSR Operators

= cascade :: [FSR] -> FSR

= outputlnto :: FSR -> BitFunction -> FSR

— e
= intolnput :: BitFunction -> FSR -> FSR

—e)

‘_H And More FSR Operators

s Clocked :: FSR -> FSR

— > mmy * -,
= clocks :: FSR -> FSR -> FSR
N —

>

>

= N.B.: A FSR does not have a clock.

‘_H Example: Simple Shift Register

shift :: Int -> FSR
shift n = ([1..n] >>> 1, [n], 0)

Example:
shift 8 = ([8,1,2,3,4,5,6,7], [8], 0)

NN D
12|34 |5|6|7]8

|—> —>
Note:

FSR = (BitFunction,BitFunction,Int)

Example:
Linear Feedback Shift Register

Ifsr :: [Int] -> FSR

Example:
Ifsr [2,3,4,8] =
([(2 "xor" 3 'xor 4 xor 8),1,2,3,4,5,6, 7]
/(8]

0) AANA NS

[[v v ¥ '
203D4D8]

‘_H Example: Geffe Generator

geffe :: [Int] -> [Int] -> [Int] -> FSR
geffe xs ys zs =
(Ifsr xs “parallel” Ifsr ys “parallel” Ifsr zs)
“outputInto” [ite 1 2 3]

lfsr xs
[Select)

lfsr ys ——

Mux —>

lfsr zs ———»

‘_H Example: LILI-128

— clockctl —»p LFSR,

Input Output sequence

clocketl

0

1
2
3

~

R O O O

~ ~ ~ ~

0,0,1
0,1,1
1,1,1
1,1,1

’
’
’
’

14

Example: LILI-128

1i1il128 =
cascade [shift 4 "clocks®
lfsr’ [2,14,15,17,31,33,35,39] [12,20]
, clockectl "clocks’
lfsr’ [1,39,42,53,55,80,83,89] fd
]
fd = [1,2,4,8,13,21,31,45,66,81] "into [£fd']
clockcetl =
([4,1,2,3] ++ ites 1 [il && i2, i2, il || i2]
[false, 5, 6]
L1 1 7]
r2)

‘_H FSR Laws

s Associative Laws

(x "parallel” y) "parallel z = x "parallel (y parallel z)

(x "compose y) compose z = x compose (y ~compose z)

= Moving computation between FSRs

(x "outputInto” £) ‘compose y = x ‘compose (f "inputInto’ vy)

:H Road Map

s AIM Overview

= Specifying Cryptographic Algorithms
= Block Ciphers on the PCE
= Stream Ciphers on the CCE

— = Verification

= Is an implementation (micro-code and configuration)
equivalent to the specification?

= Summary

‘_H Verification: Three Steps

= Parameterize model w.r.t. bit-operations on
registers

= Instantiate to three implementations of
“Booleans”
(Giving us three related models)

= Do testing and verification using these models

iIStep 1: Parameterize Model

Bool

—

= Transform PCE Model:

= Parameterize over Boolean operators on machine
registers and flags
= Achieved with Haskell’s type classes

iIStep 2. Instantiate Model Thrice

= App
mModa

imp

y parameterized
el to three
ementations of

Boo

ean operators

Equivalent to
original model

More abstract than
original model

Symbolic execution
of original model

*Step 3: Use BDD Model to Verify

rcéprog

BDD

= %|"” a symbolic value

= rc6i’ and rc6s’ — program
segments.

= What if verification doesn't
succeed?

hugs> runPCE rc6i’ i "isEqual’ rcé6s’ i

True

*Step 3: Use Bool3 Model to Test

rcéprog

rcéprog

= Debug specification:
hugs> runPCE rc6i’ i "isEqual’ rcé6s’ i

rc6Spec inputl == outputl
False
rc6Spec input2 == output2
= Verification is = Debug “"runPCE"” and “rcéprog”:
COmp|ementeC| by testlng: runPCE rcéprog inputl == outputl

runPCE rcéprog input2 == output2

‘_H Step 1: Parameterize Model

data Bool = True | False class Boolean b where
true :: b
True && X = X false b
False && x = False (&&) - b ->b -> b
(11) :b->b ->Db
False || x = x
not : b ->Db
True || x = True
ite : b ->b ->b ->Db
nor : b ->b ->Db
Xor : b ->b ->Db
ite c a b =
c & a || not c & b
nor a b = not (a || b)

Xor a b =
a & not b || not a && b

‘_H Step 1: Parameterize Model

= Generalizing PCE model to use Boolean

= Sometimes automatic:
= a&&Db

= Sometimes easy:
« fathenbelsec => iteabc

= Sometimes harder:
= lookup table (tolnt bs) => 7?77?

‘_H Step 2: Instantiate Model Thrice

o|lo|lo|1|1|l0|1]|1 instance Boolean Bool where

instance Boolean Bool3 where

0 [0 0w | || 1 instance Boolean BDD where
vy Vi
> <<
v V2

‘_H Step 2: Instantiate Model Thrice

data Bool3 = B3True | B3False | B3Unk

instance Boolean Bool3 where
true = B3True
false = B3False

B3True && x X

B3False && x = B3False
B3Unk && = B3Unk
not B3True = B3False
not B3False = B3True
not B3Unk = B3Unk

‘_H Step 2: Instantiate Model Thrice

instance Boolean BDD where
true = bddTrue
false = bddFalse

(&&) = bddAnd
(|]) = bddOor
not = bddNot

= BDD primitives implemented by foreign calls to
Buddy BDD library

‘_H Step 3: Use Models to Verify/Test

Hugs [AIM]> load "square.aim"

RO = 00000000000000000000000000000000 R1 = 00000000000000000000000000000000
R2 = 00000000000000000000000000000000 R3 = 00000000000000000000000000000000
R4 = 00000000000000000000000000000000 R5 = 00000000000000000000000000000000
R6 = 00000000000000000000000000000000 R7 = 00000000000000000000000000000000

->0: R7 = 00000000000000000000000000001000;

Shift Count = 00000000000000000000000000001000;
PERMUTE (APFU10, R31, R31, RO, R7) | Rl = P1 | R2
PERMUTE (APFU2, R31, R31, RO, R31);

PERMUTE (APFU4, R31, R31, RO, R31) | R5 = NL. | R3 = SUB(R1l, R3);
PERMUTE (APFU1, R31, R31, RO, R31) | R2 = SUB(R1l, R2);

PERMUTE (APFU3, R31, R31, RO, R31);

P2 | R3 P3;

o O d W N R

‘_H Step 3: Use Models to Verify/Test

Hugs [AIM]> setReg RO newVarslé6

RO = 0000000000000000################ R1 = 00000000000000000000000000000000
R2 = 00000000000000000000000000000000 R3 = 00000000000000000000000000000000
R4 = 00000000000000000000000000000000 R5 = 00000000000000000000000000000000
R6 = 00000000000000000000000000000000 R7 = 00000000000000000000000000000000

->0: R7 = 00000000000000000000000000001000 ;

Shift Count = 00000000000000000000000000001000;
PERMUTE (APFU10, R31, R31, RO, R7) | Rl = P1 | R2
PERMUTE (APFU2, R31, R31, RO, R31);

PERMUTE (APFU4, R31, R31, RO, R31) | R5 = NL. | R3 = SUB(R1l, R3);

P2 | R3 P3;

= W N R

‘_H Step 3: Use Models to Verify/Test

Hugs [AIM]> step 4

RO = 0000000000000000###i#t###t#####H#### RL = 000010000000000000001000#####i###
R2 = 00000000########0000000000000000 R3 = 00000000########00000000####H####
R4 = 00000000000000000000000000000000 R5 = 00000000000000000000000000000000
R6 = 00000000000000000000000000000000 R7 = 00000000000000000000000000001000

P1 | R2

2: PERMUTE (APFU10, R31, R31, RO, R7) | Rl P2 | R3 = P3;
3: PERMUTE (APFU2, R31, R31, RO, R31);

->4: PERMUTE (APFU4, R31, R31, RO, R31) | R5 = NL. | R3 = SUB(R1l, R3);
5: PERMUTE (APFUl, R31, R31, RO, R31) | R2 = SUB(R1, R2);

6: PERMUTE (APFU3, R31], R31, RO, R31);

‘_H Step 3: Use Models to Verify/Test

Hugs [AIM]> step 4

RO = 0000000000000000###i#t###t#####H#### RL = 000010000000000000001000#####i###
R2 = O0000###########H#00001000######## R3 = O000H#HHHH#HHHHHHHHO000HHHHHHH#HH#HH
R4 = 00000000000000000000000000000000 R5 = 0000000000000000####H###H#H##H#H##H#OH#
R6 = 00000000000000000000000000000000 R7 = 00000000000000000000000000001000

6: PERMUTE (APFU3, R31, R31, RO, R31);
7: PERMUTE (APFU1l, R31, R31, R3, R31) | R4 = P2 | R3 = LINEAR(P2 P3) | Rl =
ADD (R5, NL);
->8: R6 = ADD(A, A, LSL);
9: PERMUTE (APFU2, R31, R31, R2, R31) | R3 = SUB(R3, R4);
10: PERMUTE (APFU2, R31, R31, A, R31) | R6 = SUB(R6, NL, LSL);

‘_H Step 3: Use Models to Verify/Test

Hugs [AIM]> step 8

RO = #######H##H#4#H#HAHGHHHHHSHH###H###0# R1 = 0000000000000004##H#H###H###H###H###
R2 = OOOO#####H#H#H##H##H#00001000###H##### R3 = O00O0H#HHHOHH#HHHHAHOOOOHHHOH#HHHHH#H
R4 = 00000000########00000000######## RS = #H4#H##H#HHHHHHAHAHHHGHHAHAHEHHOH
R6 = ######H##A##H4H#H##AGHH#H##A###H#H###0# R7 = 00000000000000000000000000001000

12: PERMUTE (APFU4, R31, R31, R3, R31) | R5 = ADD(R5, R1, LSL);
13: PERMUTE (APFU12, R31, R31, R6, R31) | R5 = SUB(A, NL, LSL);
14: RO = ADD(P1, A);

->15: JMP(15);

Hugs [AIM]> RO "isEqual (newVarsl6 * newVarsl6)
RO == ###H##H##H#HH#HRHAHAHHHHHHAHAHH##AOR ——> True

‘_H Road Map

s AIM Overview

= Specifying Cryptographic Algorithms
= Block Ciphers on the PCE
= Stream Ciphers on the CCE

s Verification
—> = Summary

:H Summary

= Large gap between specification &
implementation

= Multiple techniques to span the gap
= Domain Abstractions (DSL)
= Configuration (PNLFU or Logic) Generators

= Machine Models
« Parameterized Models: Standard, Symbolic

= Executable Specifications
s Haskell is the infrastructure for it all

‘_H A Large Gap

Specification Implementation

RC6 Algorithm z ? / RC6 micro-code /

/ RC6 Perm/NLU

PCE

‘_H Domain Abstractions (DSL)

Specification

ﬁl Configuration Generators

Specification

* Machine Models (Std, Symbolic)

Specification Implementation

RC6 micro-code

RC6 Algorithm
RC6 Perm/NLU

|

RC6
Perms/S-Boxes

Executable Specifications

Specification Implementation

RC6 Algorithm RC6 micro-code

/

testing

RC6 Perm/NLU

RC6
Perms/S-Boxes

il Haskell is the infrastructure

Achieved
with
Haskell

Specification Implementation

RC6 Algorithm RC6 micro-code

/

verification

RC6 Perm/NLU

e

Written in
Haskell

RC6
Perms/S-Boxes

Embedded
in Haskell

:H Accomplishments

= Designed DSL for Bit-Functions/Finite-Shift-Registers
= Clean extension of previous DSL for Permutations/S-boxes
=« Formal semantics

= Algebra

= Wrote HW models for PCE and CCE
= Developed “parameterized” model for PCE

= Developed specifications and implementations
= RC6 (needs multiplication), Rinjdael, TEA

= Integrated BDD package into Haskell
= Verified 3 micro-code implementations of squaring

:H Lessons

= A single language greatly simplified our job
Using Haskell to
= Embed DSL « Model = Specify
enables us to
= Verify in Haskell

= Investment in DSL design was worthwhile
= Can amortize over many ciphers
= Makes specifications shorter and clearer
= Can generate correct configurations
= Automatically for PCE, semi-automatically for CCE.
= Haskell’s overloading (type classes) greatly facilitated
« Embedding DSL into Haskell
= Model “parameterization”

	Specification of AIM Crypto Engines
	Road Map
	AIM
	AIM Architecture
	Road Map
	PCE Architecture (Simplified)
	A Recipe for a DSL
	Permutations (Abstraction No. 1)
	`into` Operator
	++ Operator
	More Operations
	Permutation Laws
	Permutation Laws (2)
	S-boxes (Abstraction No. 2)
	S-box Operations & Laws
	Road Map
	CCE Architecture (Simplified)
	Bit-Functions (Abstraction No. 3)
	Bit-Function Examples
	Bit-Function Operations
	Bit-Function Operations
	Bit-Function Laws
	A Common Structurein Stream Ciphers
	Generalized FSR(Abstraction No. 4)
	FSR Compared to Moore Machine
	FSR Operators: Basic Three
	More FSR Operators
	And More FSR Operators
	Example: Simple Shift Register
	Example: Linear Feedback Shift Register
	Example: Geffe Generator
	Example: LILI-128
	Example: LILI-128
	FSR Laws
	Road Map
	Verification: Three Steps
	Step 1: Parameterize Model
	Step 2: Instantiate Model Thrice
	Step 3: Use BDD Model to Verify
	Step 3: Use Bool3 Model to Test
	Step 1: Parameterize Model
	Step 1: Parameterize Model
	Step 2: Instantiate Model Thrice
	Step 2: Instantiate Model Thrice
	Step 2: Instantiate Model Thrice
	Step 3: Use Models to Verify/Test
	Step 3: Use Models to Verify/Test
	Step 3: Use Models to Verify/Test
	Step 3: Use Models to Verify/Test
	Step 3: Use Models to Verify/Test
	Road Map
	Summary
	A Large Gap
	Domain Abstractions (DSL)
	Configuration Generators
	Machine Models (Std, Symbolic)
	Executable Specifications
	Haskell is the infrastructure
	Accomplishments
	Lessons

