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AIM

� Motorola AIM
(Advanced INFOSEC Machine)

� On-board encryption engines
� MASK technology

(Mathematically Assured Separation Kernel)
� Physically tamper-proof

www.motorola.com/GSS/SSTG/ISSPD/Embedded/AIM/
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Road Map

� AIM Overview
� Specifying Cryptographic Algorithms

� Block Ciphers on the PCE (previous work)
� A DSL1 for permutations and S-boxes

� Stream Ciphers on the CCE
� A DSL for bit-functions and feedback shift registers

� Verification
� Summary

1 DSL – Domain Specific Language



PCE Architecture (Simplified)

� Execution components
� APFU (Permutation Function

Unit)
� 16 predefined permutations

� NLU (Non-Linear Unit)
� 16 one-bit memories
� Independently addressable

� LFU (Linear Function Unit)
� XOR unit

� ALU

Registers

APFU NLU LFU ALU

Memory
Access



A Recipe for a DSL

� Identify an abstraction (or Abstract Data Type)
� Think “values” (functionally, not procedurally):

� Yes: integers, complex numbers, polynomials, sequences, etc.
� No: linked-list, arrays, pointers, etc.

� Develop compositional operators for it
� Question: How can we create primitive values?
� Question: How can we produce new values from old?

� Look for natural algebraic laws
� Aids design of abstractions & operators
� Provides understanding of the operators



Permutations (Abstraction No. 1)

� Sequence of numbers
� Numbered left to right
� Beginning at 1

� Examples
� [4,1,2,3]
� [2,4,2,2,4,3,6]
� [8,1,7,4,1,5,3]

� Permutations can be any
size
� 16 or 32 bits is common

1  2  3  4

4  1  2  3

8  1  7  4  1  5  3

1  2  3  4  5  6  7  8

2  4  2  2  4  3  6

1  2  3  4  5  6 



`into` Operator

� Pipe the output of one
permutation into the input of
another

� Like function composition 8  2  6  2  2  4  2

[2,4,2,2,4,3,6] 
  `into`
[8,1,7,4,1,5,3]
= 
[8,2,6,2,2,4,2]

1  2  3  4  5  6  7  8 



++ Operator

� Joins two
permutations together,
side by side
� Each permutation

draws from the same
input bits

� Obtained simply by
appending the two
sequences together

1  2  3  4  5  6  7  8

1  2  3  4  5  6  7  8 

2  4  8  2

7  3  1  6

1  2  3  4  5  6  7  8

2  4  8  2  7  3  1  6

[2,4,8,2] ++ [7,3,1,6]
 = [2,4,8,2,7,3,1,6]



More Operations
xs `select` [n..m]

   Selects bits n through m from xs
xs <<< n

Rotate xs left by n
xs >>> n

Rotate xs right by n
pad n xs

Pad xs on left to be n-bits wide
xs `beside` ys

Combine xs and ys in parallel
size xs

The number of bits output by xs (length of sequence)



Permutation Laws
� Size

size (xs ++ ys)       = size xs + size ys
size (xs `beside` ys) = size xs + size ys
size (xs `into` ys)   = size ys
size (pad n xs)       = n

� Rotating
(xs >>> m) >>> n  =  xs >>> m+n
(xs <<< m) <<< n  =  xs <<< m+n

 xs >>> 0 = xs
 xs <<< 0 = xs

(xs >>> m) <<< n =
       if m > n then xs >>> (m-n) else xs <<< (n-m)



Permutation Laws (2)

� `into`
[1..] `into` xs = xs
xs `into` [1..size xs] = xs
xs `into` (ys ++ zs) = (xs `into` ys) ++ (xs `into` zs)
xs `into` (ys <<< n) = (xs `into` ys) <<< n
xs `into` (ys >>> n) = (xs `into` ys) >>> n

� Associativity
(xs ++ ys) ++ zs = xs ++ (ys ++ zs)
(xs `beside` ys) `beside` zs
                           = xs `beside` (ys `beside` zs)
(xs `select` ys) `select` zs
                           = xs `select` (ys `select` zs)



S-boxes (Abstraction No. 2)

� Every crypto-algorithm needs non-linear components
� Multiplication (RC6)
� Galois field inversion (Rijndael)
� DES has 8 separate S-boxes; each 6-bit in, 4-bit out

� An S-box is an arbitrary function combined with a
“addressing permutation”



S-box Operations & Laws

� Creating S-boxes:
sbox :: Perm -> Int -> [Integer] -> Sbox

� Combining S-boxes:
pack   :: Perm -> [Sbox] -> Sbox
extend :: [Sbox] -> Sbox
intoS  :: Perm -> Sbox -> Sbox

� Laws:
p `intoS` (sbox q n xs) = sbox (p `into` q) n xs
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CCE Architecture (Simplified)

� Micro-sequencer
� Simple RISC architecture
� Interfaces with Crypto Controller
� Controls Cryptographic

Coprocessor

� Cryptographic Coprocessor
� Control Registers
� State Registers
� Configurable Logic

� The difficulty of programming
the CCE lies in specifying this

Cryptographic
Coprocessor

State Regs.

Micro-
Sequencer

Configurable
Logic

Control Regs.



Bit-Functions (Abstraction No. 3)

� Permutations allow for moving bits around

� Bit-Functions allow for Boolean functions
1  2  3  4

1&&4  3||4

&& ||

1  2  3  4

4  1  2  3



Bit-Function Examples
� Rotate (4 to 4 Bit-Function)

[4,1,2,3]

� Note: All permutations are Bit-Functions!

� Odd Parity (4 to 1 Bit-Function)

[1 `xor` 2 `xor` 3 `xor` 4]

� Two Bit Adder (4 to 2 Bit-Function)

[ 1 `xor` 3
, 2 `xor` 4 `xor` (1 && 3)
]



Bit-Function Operations

� Permutation operations extend to Bit-Functions:
� `into`
� ++
� `select`
� <<<, >>>
� pad
� `beside`
� size
� …



Bit-Function Operations

� Operations on “Input Bits”:
� Standard Boolean operators (overloaded):

1 && 2, 1 || 2, …
� Additional operators:

true, false, ite 1 2 3, 1 `xor` 2, …

� Bit-Function Operations:
ites b [x1,x2,…] [y1,y2,…] = [ite b x1 y1, ite b x2 y2, …]



Bit-Function Laws

� Permutation laws extend to Bit-Functions
(xs >>> m) >>> n  =  xs >>> m+n

� Boolean laws apply to each “bit”
[1 && true] = [1]

� Bit-Function Laws
ites a (ites b xs ys) zs =
           ites b (ites a xs zs) (ites a ys zs)



A Common Structure
in Stream Ciphers

� Feedback Shift Register (FSR)

b1 bn-1b2 b3 bn

Feedback Function

. . .

� Generalized FSR

b1 bn-1b2 b3 bn

Feedback Function

. . .

Output
Function



Generalized FSR
(Abstraction No. 4)

� FSR = (next,output,inputWidth)

next       :: BitFunction   (Q � I � Q)
output     :: BitFunction   (Q � O)
inputWidth :: Int

I

O

b1 bn-1b2 b3 bn

next

. . .

output

Q



FSR Compared to Moore Machine

� Moore Machine:
� Q      = set of states
� I       = set of inputs
� O      = set of outputs
� q0       :: Q             = initial state
� next    :: Q � I � Q = next state function
� output :: Q �  O     = output function

� FSR Differences:
� FSR has no initial state
� State (Q) represented as a bit-vector, not arbitrary set
� Input and output (I and O) are bit-vectors, not sets



� compose :: FSR -> FSR -> FSR

� cycle :: FSR -> FSR

� parallel :: FSR -> FSR -> FSR

FSR Operators: Basic Three
(ab)

(a*)

(a|b)



More FSR Operators
� cascade :: [FSR] -> FSR

� outputInto :: FSR -> BitFunction -> FSR

� intoInput :: BitFunction -> FSR -> FSR

. . .

f

f



And More FSR Operators

� clocked :: FSR -> FSR

� clocks :: FSR -> FSR -> FSR

� N.B.: A FSR does not have a clock.



Example: Simple Shift Register

shift :: Int -> FSR
shift n = ([1..n] >>> 1, [n], 0)

Example:
  shift 8 = ([8,1,2,3,4,5,6,7], [8], 0)

1 72 3 84 5 6

Note:
  FSR = (BitFunction,BitFunction,Int)



Example:
Linear Feedback Shift Register

lfsr :: [Int] -> FSR

Example:
  lfsr [2,3,4,8] =
     ([(2 `xor` 3 `xor` 4 `xor` 8), 1, 2, 3, 4, 5, 6, 7]
     ,[8]
     ,0)

1 72 3 8

2�3�4�8

4 5 6



Example: Geffe Generator

geffe :: [Int] -> [Int] -> [Int] -> FSR
geffe xs ys zs =
   (lfsr xs `parallel` lfsr ys `parallel` lfsr zs)
   `outputInto` [ite 1 2 3]

lfsr xs

lfsr zs

lfsr ys

Mux

Select



Example: LILI-128

LFSRc LFSRd

fc fd

clockctl

2

       clockctl

Input     Output sequence
0       0,0,0,1
1       0,0,1,1
2       0,1,1,1
3       1,1,1,1



Example: LILI-128
lili128  =
  cascade [ shift 4 `clocks`
      lfsr’ [2,14,15,17,31,33,35,39] [12,20]
          , clockctl `clocks`
             lfsr’ [1,39,42,53,55,80,83,89] fd
          ]
fd       = [1,2,4,8,13,21,31,45,66,81] `into` [fd']
clockctl =
  ([4,1,2,3] ++ ites 1 [i1 && i2, i2, i1 || i2]
                       [false, 5, 6]
  ,[1 || 7]
  ,2)



FSR Laws

� Associative Laws

(x `parallel` y) `parallel` z = x `parallel` (y `parallel` z)

(x `compose` y) `compose` z = x `compose` (y `compose` z)

� Moving computation between FSRs

(x `outputInto` f ) `compose` y = x `compose` (f `inputInto` y)



Road Map

� AIM Overview
� Specifying Cryptographic Algorithms

� Block Ciphers on the PCE
� Stream Ciphers on the CCE

� Verification
� Is an implementation (micro-code and configuration)

equivalent to the specification?

� Summary



Verification: Three Steps

� Parameterize model w.r.t. bit-operations on
registers

� Instantiate to three implementations of
“Booleans”
(Giving us three related models)

� Do testing and verification using these models



Step 1: Parameterize Model

� Transform PCE Model:
� Parameterize over Boolean operators on machine

registers and flags
� Achieved with Haskell’s type classes

PCE
Model

PCE
Model

Bool



Step 2: Instantiate Model Thrice

� Apply parameterized
model to three
implementations of
Boolean operators

PCE
Model

Bool

PCE
Model

Bool3

PCE
Model

BDD

Equivalent to
original model

More abstract than
original model

Symbolic execution
of original model



Step 3: Use BDD Model to Verify
� “i” a symbolic value

� rc6i’ and rc6s’ – program
   segments.

� What if verification doesn’t
succeed?

hugs> runPCE rc6i’ i `isEqual` rc6s’ i

True

runPCE

BDD

rc6Spec

BDD
rc6prog



Step 3: Use Bool3 Model to Test

hugs> runPCE rc6i’ i `isEqual` rc6s’ i

False

runPCE

BDD

rc6Spec

BDD
rc6prog

� Debug specification:
  rc6Spec input1 == output1

  rc6Spec input2 == output2

  . . .

� Debug “runPCE” and “rc6prog”:
  runPCE rc6prog input1 == output1

  runPCE rc6prog input2 == output2

  . . .

runPCE

Bool3

rc6Spec

Bool3
rc6prog

� Verification is 
   complemented by testing:



Step 1: Parameterize Model

data Bool = True | False

True  && x = x
False && x = False

False || x = x
True  || x = True

...

class Boolean b where
  true  :: b
  false :: b
  (&&)  :: b -> b -> b
  (||)  :: b -> b -> b
  not   :: b -> b
  ite   :: b -> b -> b -> b
  nor   :: b -> b -> b
  xor   :: b -> b -> b

  ite c a b =
    c && a  ||  not c && b
  nor a b = not (a || b)
  xor a b =
    a && not b  ||  not a && b



Step 1: Parameterize Model

� Generalizing PCE model to use Boolean
� Sometimes automatic:

� a && b

� Sometimes easy:
� if a then b else c  =>  ite a b c

� Sometimes harder:
� lookup table (toInt bs)  =>  ???



Step 2: Instantiate Model Thrice

instance Boolean Bool  where
…

instance Boolean Bool3 where
…

instance Boolean BDD   where
…

0 10 0 11 1 0

0 0 0 1v1

0 10 1 ?? ? 0

v1 v1

v2 v2

0 1



Step 2: Instantiate Model Thrice
data Bool3 = B3True | B3False | B3Unk

instance Boolean Bool3 where
  true  = B3True
  false = B3False

  B3True  && x  = x
  B3False && x  = B3False
  B3Unk   && _  = B3Unk

  not B3True  = B3False
  not B3False = B3True
  not B3Unk   = B3Unk
  . . .



Step 2: Instantiate Model Thrice

instance Boolean BDD where
  true  = bddTrue
  false = bddFalse

  (&&)  = bddAnd
  (||)  = bddOr
  not   = bddNot

� BDD primitives implemented by foreign calls to
Buddy BDD library



Step 3: Use Models to Verify/Test

Hugs[AIM]> load "square.aim"
R0 = 00000000000000000000000000000000  R1 = 00000000000000000000000000000000
R2 = 00000000000000000000000000000000  R3 = 00000000000000000000000000000000
R4 = 00000000000000000000000000000000  R5 = 00000000000000000000000000000000
R6 = 00000000000000000000000000000000  R7 = 00000000000000000000000000000000

->0: R7 = 00000000000000000000000000001000;
  1: Shift_Count = 00000000000000000000000000001000;
  2: PERMUTE(APFU10, R31, R31, R0, R7) | R1 = P1 | R2 = P2 | R3 = P3;
  3: PERMUTE(APFU2, R31, R31, R0, R31);
  4: PERMUTE(APFU4, R31, R31, R0, R31) | R5 = NL | R3 = SUB(R1, R3);
  5: PERMUTE(APFU1, R31, R31, R0, R31) | R2 = SUB(R1, R2);
  6: PERMUTE(APFU3, R31, R31, R0, R31);



Step 3: Use Models to Verify/Test

Hugs[AIM]> setReg R0 newVars16
R0 = 0000000000000000################  R1 = 00000000000000000000000000000000
R2 = 00000000000000000000000000000000  R3 = 00000000000000000000000000000000
R4 = 00000000000000000000000000000000  R5 = 00000000000000000000000000000000
R6 = 00000000000000000000000000000000  R7 = 00000000000000000000000000000000

->0: R7 = 00000000000000000000000000001000;
  1: Shift_Count = 00000000000000000000000000001000;
  2: PERMUTE(APFU10, R31, R31, R0, R7) | R1 = P1 | R2 = P2 | R3 = P3;
  3: PERMUTE(APFU2, R31, R31, R0, R31);
  4: PERMUTE(APFU4, R31, R31, R0, R31) | R5 = NL | R3 = SUB(R1, R3);



Step 3: Use Models to Verify/Test

Hugs[AIM]> step 4
R0 = 0000000000000000################  R1 = 000010000000000000001000########
R2 = 00000000########0000000000000000  R3 = 00000000########00000000########
R4 = 00000000000000000000000000000000  R5 = 00000000000000000000000000000000
R6 = 00000000000000000000000000000000  R7 = 00000000000000000000000000001000

  2: PERMUTE(APFU10, R31, R31, R0, R7) | R1 = P1 | R2 = P2 | R3 = P3;
  3: PERMUTE(APFU2, R31, R31, R0, R31);
->4: PERMUTE(APFU4, R31, R31, R0, R31) | R5 = NL | R3 = SUB(R1, R3);
  5: PERMUTE(APFU1, R31, R31, R0, R31) | R2 = SUB(R1, R2);
  6: PERMUTE(APFU3, R31, R31, R0, R31);



Step 3: Use Models to Verify/Test

Hugs[AIM]> step 4
R0 = 0000000000000000################  R1 = 000010000000000000001000########
R2 = 0000############00001000########  R3 = 0000############0000############
R4 = 00000000000000000000000000000000  R5 = 0000000000000000##############0#
R6 = 00000000000000000000000000000000  R7 = 00000000000000000000000000001000

  6: PERMUTE(APFU3, R31, R31, R0, R31);
  7: PERMUTE(APFU11, R31, R31, R3, R31) | R4 = P2 | R3 = LINEAR(P2_P3) | R1 =

ADD(R5, NL);
->8: R6 = ADD(A, A, LSL);
  9: PERMUTE(APFU2, R31, R31, R2, R31) | R3 = SUB(R3, R4);
 10: PERMUTE(APFU2, R31, R31, A, R31) | R6 = SUB(R6, NL, LSL);



Step 3: Use Models to Verify/Test

Hugs[AIM]> step 8
R0 = ##############################0#  R1 = 000000000000000#################
R2 = 0000############00001000########  R3 = 0000###0########0000###0########
R4 = 00000000########00000000########  R5 = ##############################0#
R6 = ##############################0#  R7 = 00000000000000000000000000001000

  12: PERMUTE(APFU4, R31, R31, R3, R31) | R5 = ADD(R5, R1, LSL);
  13: PERMUTE(APFU12, R31, R31, R6, R31) | R5 = SUB(A, NL, LSL);
  14: R0 = ADD(P1, A);
->15: JMP(15);

Hugs[AIM]> R0 `isEqual` (newVars16 * newVars16)
R0 == ##############################0# --> True
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Summary

� Large gap between specification &
implementation

� Multiple techniques to span the gap
� Domain Abstractions (DSL)
� Configuration (PNLFU or Logic) Generators
� Machine Models

� Parameterized Models: Standard, Symbolic

� Executable Specifications

� Haskell is the infrastructure for it all



RC6 Algorithm

A Large Gap

Specification Implementation

RC6 micro-code

RC6 Perm/NLU

PCE



RC6 Algorithm

Domain Abstractions (DSL)

Specification Implementation

RC6 micro-code

RC6 Perm/NLU

RC6
Perms/S-Boxes

PCE



RC6 Algorithm

Configuration Generators

Specification Implementation

RC6 micro-code

RC6 Perm/NLU

Perm/NLU
Generator

RC6
Perms/S-Boxes

PCE



PCE
Standard/Symbolic

Model

RC6 Algorithm

Machine Models (Std, Symbolic)

Specification Implementation

RC6 micro-code

RC6 Perm/NLU

Perm/NLU
Generator

RC6
Perms/S-Boxes



PCE
Standard/Symbolic

Model

testing
RC6 Algorithm

Executable Specifications

Specification Implementation

RC6 micro-code

RC6 Perm/NLU

Haskell Perm/NLU
Generator

RC6
Perms/S-Boxes



PCE
Standard/Symbolic

Model

RC6 Algorithm

Haskell is the infrastructure

Specification Implementation

RC6 micro-code

RC6 Perm/NLU

Haskell Perm/NLU
Generator

RC6
Perms/S-Boxes

verification

Achieved
with

Haskell

Embedded
in Haskell Written in

Haskell



Accomplishments

� Designed DSL for Bit-Functions/Finite-Shift-Registers
� Clean extension of previous DSL for Permutations/S-boxes
� Formal semantics
� Algebra

� Wrote HW models for PCE and CCE
� Developed “parameterized” model for PCE
� Developed specifications and implementations

� RC6 (needs multiplication), Rinjdael, TEA

� Integrated BDD package into Haskell
� Verified 3 micro-code implementations of squaring



Lessons
� A single language greatly simplified our job

 Using Haskell to
� Embed DSL     ■  Model       ■  Specify

 enables us to
� Verify in Haskell

� Investment in DSL design was worthwhile
� Can amortize over many ciphers
� Makes specifications shorter and clearer
� Can generate correct configurations

� Automatically for PCE,  semi-automatically for CCE.

� Haskell’s overloading (type classes) greatly facilitated
� Embedding DSL into Haskell
� Model “parameterization”
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