
System-specific static bug finding:
tricks, (bitter) experience, open problems.

Dawson Engler
Stanford

Andy Chou, Ben Chelf, Seth Hallem
Coverity

One-slide of background.
Academic Lineage
– MIT: PhD thesis = new operating system (exokernel)
– Stanford: last seven years developing techniques to find as

many serious bugs as possible in large software systems.
– Co-founded Coverity:100+ customers, cashpositive from T=0

Our research focuses on three approaches:
– Implementation-level model checking [OSDI’02,OSDI’04].
– Automatically generate test cases using symbolic execution

[Spin’05, Oakland security’06]

– System-specific static analysis: use extended compiler to
check code. By far the easiest to use and most generally
reliable way to find many errors. Rest of the talk on this.

Background: System-specific static analysis
Systems have many ad hoc correctness rules
– “acquire lock l before modifying x”, “cli() must be paired

with sti(),” “don’t block with interrupts disabled”
– One error = crashed machine

If we know rules, can check with extended compiler
– Rules map to simple source constructs
– Use compiler extensions to express them

– Nice: scales, precise, statically find 1000s of errors

save(flags);
cli();
if(!(buf = kmalloc()))

return 0;
restore(flags);
return buf;

Linux
drivers/
raid5.c

EDG compiler

int checker “did not re-
enable ints!”

A bit more detail
{ #include ”linux-includes.h” }
sm chk_interrupts {
decl { unsigned } flags;
// named patterns
pat enable = { sti(); }

| { restore_flags(flags); };
pat disable = { cli(); };

// states
is_enabled: disable ==> is_disabled

| enable ==> { err("double enable"); }
;

is_disabled: enable ==> is_enabled
| disable ==> { err("double disable"); }
| end_of_path ==>
{ err("exiting w/intr disabled!"); }

; }

Is
enabled

Is
disabled

disable

error

initial

enable

disable

enable

End-of-
path

No X after Y: do not use freed memory
sm free_checker {
state decl any_pointer v;
decl any_pointer x;

start: { kfree(v); } ==> v.freed
;

v.freed:
{ v != x } || { v == x }

==> { /* do nothing */ }
| { v } ==> { err(“Use after free!”); }

;
}

start

v.freed

error

use(v)

kfree(v)

/* 2.4.1: fs/proc/generic.c */
ent->data = kmalloc(…)
if(!ent->data) {

kfree(ent);
goto out;

…
out: return ent;

High bit: Works well.
A bunch of checkers:
– System-specific static checking [OSDI’00] (Best paper)
– Security checkers [Oakland’02] & annotations [CCS’03]
– Race conditions and deadlocks [SOSP’03]
– Path-sensitive memory overflows [FSE’03]
– Others [ASPLOS’00,PLDI’02,PASTE’02,FSE’02(award)]
– Statistical: Infer correctness rules [SOSP’01], Z-ranking

[SAS’03], Correlation ranking [FSE’03]
Big system? Always find bugs.
– New checker, no bugs? Immediate: what’s wrong??

Tenure
Commercialized(ing): Coverity
– Successful enough to have a marketing dept.

History of the world as History of the world as coveritycoverity knows it.knows it.

2002

• Deluge of requests
from companies
wanting access to
the new
technology.

• Linux work
continues: More
than 2000 bugs
found

• Created Linuxbugs
site as a free
service

Coverity
Incorporated—
product further

refined on
Linux

2003-06

• 100 customers including
Juniper,
Synopsys, Oracle,
Veritas, nVidia,
palmOne.

• IDC: Coverity is the
fastest growing software
quality tools vendor—
and in the top 10.

Company
growth and
proliferation

2001

Static Source
Code Analysis
Exercised on

Linux

• Published several
hundred bugs in early
version of Linux.

• Hundreds of defects
fixed by the Linux
community

Breakthrough
technology

out of
Stanford

1999

• Meta-level
compilation
checker
(“Stanford
Checker")
detects 2000+
bugs in Linux.

A partial list of 100 customersA partial list of 100 customers……

EDA A&D Automotive

TelcoStorageNetworking

OSSecurity Wireless

Prevent Library of CheckersPrevent Library of Checkers

Pointer Errors
• Use of uninitialized data

- Uninitialized memory
- Uninitialized variable

• Mismatched allocation
operators

• Dereferencing invalid
pointers
- Null pointer dereference
- Wrong address space
- Accessing freed pointers

• Dangling stack references
• Use of freed resource

- Double free (memory,
file pointers, system
resources)

- Use after free (memory,
file pointers, system
resources)

Bounds Errors
• Out of bounds array access
• Buffer underflow
• Stack smashing

- Stack overflow
- Stack buffer overrun
- Stack string overrun

• Bad negative integer cast
• Incorrect allocation size
• Non-null terminated strings

Logic Errors
• Flawed branch logic
• Use of invalid STL

iterators
• Useless operation
• Inconsistent error

handling
• Security logic errors

- Time of check,
time of use

- Insecure file creation
- Improper chroot
- Improper privilege
inheritance

Resource Problems
• Resource Leak
- Memory leak
- File pointer leak
- System resource leak

API Usage Errors
• Passing large parameters
• Insecure temp file creation
• Improper method override

Concurrency Problems
• Double Lock
• Missing unlock
• Incorrect lock acquisition
• Sleeping while locked

Security Warnings
• Potentially insecure

coding practices

Checker Library

External Data Handling
• Integers

- Loop bound
- Array access
- Allocation size

• Strings
- Buffer overflow
- SQL Injection
- Format string errors
- Cross-site scripting

Quality

• System and Process Crash
• Memory/Resource Leaks
• Data, Memory, File Corruption
• Performance Degradation
• Unpredictable Behavior

• Deadlocks
• Lock Contention
• Unpredictable performance
• Performance degradation

Security

• Denial of Service
• Privilege Escalation
• Malicious Code

Concurrency

Talk overview
System-specific static analysis
– Correctness rules map clearly to concrete source actions
– Check by making compilers aggressively system-specific
– Nice: One person writes checker, imposed on all code.

Next: Belief analysis
– Using programmer beliefs to infer state of system and

rules to check
– Key: Find bugs without knowing truth.

General experiences + open problems.
Weird things that happen when academics try to
commercialize a static checking tool.

Goal: find as many serious bugs as possible
Problem: what are the rules?!?!
– 100-1000s of rules in 100-1000s of subsystems.
– To check, must answer: Must a() follow b()? Can foo()

fail? Does bar(p) free p? Does lock l protect x?
– Manually finding rules is hard. So don’t. Instead infer

what code believes, cross check for contradiction
Intuition: how to find errors without knowing truth?
– Contradiction. To find lies: cross-examine. Any

contradiction is an error.
– Deviance. To infer correct behavior: if 1 person does X,

might be right or a coincidence. If 1000s do X and 1
does Y, probably an error.

– Crucial: we know contradiction is an error without knowing
the correct belief!

Cross-checking program belief systems
MUST beliefs:
– Inferred from acts that imply beliefs code *must* have.

– Check using internal consistency: infer beliefs at
different locations, then cross-check for contradiction

MAY beliefs: could be coincidental
– Inferred from acts that imply beliefs code *may* have

– Check as MUST beliefs; rank errors by belief confidence.

x = *p / z; // MUST belief: p not null
// MUST: z != 0

unlock(l); // MUST: l acquired
x++; // MUST: x not protected by l

// MAY: A() and B()
// must be paired

B(); // MUST: B() need not
// be preceded by A()

A();
…
B();

A();
…
B();

A();
…
B();

A();
…
B();

Internal Consistency: finding security holes
Applications are bad:
– Rule: “do not dereference user pointer <p>”
– One violation = security hole
– Detect with static analysis if we knew which were “bad”
– Big Problem: which are the user pointers???

Sol’n: forall pointers, cross-check two OS beliefs
– “*p” implies safe kernel pointer
– “copyin(p)/copyout(p)” implies dangerous user pointer
– Error: pointer p has both beliefs.
– Implemented as a two pass global checker

Result: 24 security bugs in Linux, 18 in OpenBSD
– (about 1 bug to 1 false positive)

An example
Still alive in linux 2.4.4:

– Tainting marks “rt” as a tainted pointer, checker warns
that rt is passed to a routine that dereferences it

– 2 other examples in same routine…

/* drivers/net/appletalk/ipddp.c:ipddp_ioctl */
case SIOCADDIPDDPRT:

return ipddp_create(rt);
case SIOCDELIPDDPRT:

return ipddp_delete(rt);
case SIOFCINDIPDDPRT:

if(copy_to_user(rt, ipddp_find_route(rt),
sizeof(struct ipddp_route)))

return –EFAULT;

MAY beliefs
Separate fact from coincidence? General approach:
– Assume MAY beliefs are MUST beliefs.
– Check them
– Count number of times belief passed check (S=success)
– Count number of times belief failed check (F=fail)
– Expect: valid beliefs = high ratio of S to F.

– Use S and F to compute confidence that belief is valid.
– Rank errors based on this confidence.
– Go down list, inspecting until false positives are too high.
–

How to weigh evidence?

How to weigh MAY beliefs
Wrong way: percentage. (Ignores population size)
– Success=1, Failure=0, Percentage = 1/1 * 100= 100%
– Success=990, Failure=10, Percentage = 990/1000 = 99%

A better way: “hypothesis testing.”
– Treat each check as independent binary coin toss
– Pick probability p0 that coin “coincidently” comes up S.
– For a given belief, compute how “unlikely” that it

coincidently got S successes out of N (N=S+F) attempts

HUGE mistake: pick T, where Z>T implies MUST
– Becomes very sensitive to T.

Z = (observed – expected) / stderr
= (S – N*p0) / sqrt(N*p0*(1-p0))

Statistical: Deriving deallocation routines
Use-after free errors are horrible.
– Problem: lots of undocumented sub-system free functions
– Soln: derive behaviorally: pointer “p” not used after call

“foo(p)” implies MAY belief that “foo” is a free function
Conceptually: Assume all functions free all arguments
– (in reality: filter functions that have suggestive names)
– Emit a “check” message at every call site.
– Emit an “error” message at every use

– Rank errors using z test statistic: z(checks, errors)
– E.g., foo.z(3, 3) < bar.z(3, 1) so rank bar’s error first
– Results: 23 free errors, 11 false positives

foo(p);
*p = x;

foo(p);
*p = x;

foo(p);
*p = x;

bar(p);
p = 0;

bar(p);
p = 0;

bar(p);
*p = x;

Talk Overview
Belief analysis: broader checking
– Beliefs code MUST have: Contradictions = errors
– Beliefs code MAY have: check as MUST beliefs and rank

errors by belief confidence
– Key feature: find errors without knowing truth

Rest of talk:
– Weird things that happen when academics try to

commercialize static checking.

– General experience.

Weird things that surprise academics trying
to commercialize a static checking tool.

Andy Chou, Ben Chelf, Seth Hallem
Charles Henri-Gros, Bryan Fulton, Ted Unangst

Chris Zak
Coverity

Dawson Engler
Stanford

A naïve view
Initial market analysis:
– “We handle Linux, BSD, we just need a pretty box!”
– Not quite.

First rule of static analysis: no check, no bug.
– Two first order examples we never would have guessed.
– Problem 1: if you can’t find the code, can’t check it.
– Problem 2: if you can’t compile code, you can’t check it.

And then: how to make money on software tool?
– “Tools. Huh. Tools are hard.” Any VC in early 2000.

Myth: the C (or C++) language exists.
Well, not really. The standard is not a compiler.
– What exists: gcc-2.1.9-ac7-prepatch-alpha, xcc-i-did-

not-understand-pages4,33,208-242-of-standard.
– Oh. And Microsoft. Conformance = competitive

disadvantage. Do the math on how this deforms .c files
– Basic LALR law: What can be parsed will be written.
Rule: static analysis must compile code to check.
– If you cannot (correctly) parse “language” cannot check.

– Common (mis)usage model: “allegedly C” header file does
something bizarre not-C thing. Included by all source.
Customer watches your compiler emit voluminous parse
errors. (This is not impressive.)

– Of course: gets way worse with C++ (which we support)

Banal. But take more time than you can believe:

And, of course, asm:

unsigned x = 0xdead_beef;

int foo(int a, int a);

unsigned x @ “TEXT”;

Int16 Int16 ErrSetJumpErrSetJump((ErrJumpBufErrJumpBuf bufbuf)) = { 0x4E40 + 15, 0xA085 };= { 0x4E40 + 15, 0xA085 };

#pragma asm
mov eax, eab

#pragma end_asm

// newline = end
__asm mov eax, eab

// “]” = end
__asm [

mov eax, eab
]

asm foo() {
mov eax, eab;

}

void x; short x; int *y = &(int)x;

Some bad examples to find in headers

Microsoft example: precompiled headers
Spec:

Implication

It gets worse: on-the-fly header fabrication

The compiler treats all code occurring before the .h
file as precompiled. It skips to just beyond the
#include directive associated with the .h file, uses
the code contained in the .pch file, and then compiles
all code after filename

I can put whatever I want here.
It doesn’t have to compile.
If your compiler gives an error it sucks.
#include <some-precompiled-header.h>

Solution: pre-preprocessing rewrite rules.
Supply regular expressions to rewrite bad constructs

#pragma asm
…
#pragma end_asm

ppp_translate (“/#pragma asm/#if 0/”);
ppp_translate(“/#pragma end_asm/#endif/”);

#if 0
…
#endif

What this all means concretely.
We use Edison Design Group (EDG) frontend
– Pretty much everyone uses. Been around since 1989.
– Aggressive support for gcc, microsoft, etc. (bug compat!)

Still: coverity by far the largest source of EDG bugs:
– 146 parsing test cases (i.e., we got burned)
– 219 compiler line translation test cases (i.e., ibid).
– 163 places where frontend hacked (“#ifdef COVERITY”)

Still need custom rewriter for many supported compilers:
205 hpux_compilers.c
215 iar_compiler.c
240 ti_compiler.c
251 green_hills_compiler.c
377 intel_compilers.c
453 diab_compilers.c

453 sun_compilers.c
485 arm_compilers.c
617 gnu_compilers.c
748 microsoft_compilers.c
1587 metrowerks_compilers.c
…

Academics don’t understand money.
“We’ll just charge per seat like everyone else”
– Finish the story: “Company X buys three Purify seats,

one for Asian, one for Europe and one for the US…”
Try #2: “we’ll charge per lines of code”
– “That is a really stupid idea: (1) …, (2) … , … (n) …”
– Actually works. I’m still in shock. Would recommend it.

Good feature for seller:
– No seat games. Revenue grows with code size. Run on

another code base = new sale.
Good feature for buyer: No seat-model problems
– Buy once for project, then done. No per-seat or per-

usage cost; no node lock problems; no problems adding,
removing or renaming developers (or machines)

– People actually seem to like this pitch.

Some experience.
Surprise: Sales guys are great
– Easy to evaluate. Modular.

Company X buys tool, then downsizes.
– Good or bad?

Large companies “want” to be honest
– Veritas: want monitoring so don’t accidently violate!

What can you sell?
– User not same as tool builder. Naïve. Inattentive. Cruel.
– Makes it difficult to deploy anything sophisticated.
– Example: statistical inference, race conditions.
– Some ways, checkers lag much behind our research ones.

“No, the loop will go
through once!”

“No, && is ‘or’!”

“No, ANSI lets you write 1 past end of the array!”
– (“We’ll have to agree to disagree.” !!!!)

for(s=0; s < n; s++) {
…

switch(s) {
case 0: assert(0);

return;
…
}
…dead code…

for(i=1; i < 0; i++) {
…deadcode…

}

void *foo(void *p, void *q) {
if(!p && !q)

return 0;

unsigned p[4]; p[4] = 1;

“No, your tool is broken: that’s not a bug”

Laws of static bug finding
Vacuous tautologies that imply trouble
– Can’t find code, can’t check.
– Can’t compiler code, can’t check.

A nice, balancing empirical tautology
– If can find code
– AND checked system is big
– AND can compile (enough) of it
– THEN: will always find serious errors.

A nice special case:
– Check rule never checked? Always find bugs. Otherwise

immediate kneejerk: what wrong with checker???

Some cursory static analysis experiences
Bugs are everywhere
– Initially worried we’d resort to historical data…
– 100 checks? You’ll find bugs (if not, bug in analysis)

Finding errors often easy, saying why is hard
– Have to track and articulate all reasons.

Ease-of-inspection *crucial*
– Extreme: Don’t report errors that are too hard.

The advantage of checking human-level operations
– Easy for people? Easy for analysis. Hard for analysis?

Hard for people.
Soundness not needed for good results.

Myth: more analysis is always better
Does not always improve results, and can make worse
The best error:
– Easy to diagnose
– True error

More analysis used, the worse it is for both
– More analysis = the harder error is to reason about,

since user has to manually emulate each analysis step.
– Number of steps increase, so does the chance that one

went wrong. No analysis = no mistake.
In practice:
– Demote errors based on how much analysis required
– Revert to weaker analysis to cherry pick easy bugs
– Give up on error classes that are too hard to diagnose.

No bug is too stupid to check for.
Someone, somewhere will do anything you can think of.
Best recent example:
– From security patch for bug found by Coverity in X

windows that lets almost any local user get root.

Next: Two amazingly effective checks.

--- hw/xfree86/common/xf86Init.c.orig 2006-03-17…
/* First the options that are only allowed for root */

- if (getuid() != 0 && geteuid == 0) {
+ if (getuid() != 0 && geteuid() == 0) {

ErrorF("-configure can only be used by root.\n");
exit(1);
}

One of the best stupid checks: Deadcode
Programmer generally intends to do useful work.
– Use constraint analysis to flag code where all paths to it

are impossible. Often serious logic bug.
From UU aodv (good code):
– Linked list removal mistake. After send, take packet off

queue. Bug = if any packets on list before the one we
want will lose them!
// packet_queue.c:packet_queue_send
prev = null;
while(curr) {

if(curr->dst_addr == dst_addr) {
if(prev == NULL)

PQ.head = curr->next;
else
…DEADCODE [prev never updated]…

Internal null: trivial, amazingly effective.
“*p” implies programmer believes p is not null
A check (p == NULL) implies two beliefs:
– POST: p is null on true path, not null on false path
– PRE: p was unknown before check

Cross-check beliefs: contradiction = error.

Check-then-use (79 errors, 26 false pos)

/* 2.4.1: drivers/isdn/svmb1/capidrv.c */
if(!card)
printk(KERN_ERR, “capidrv-%d: …”, card->contrnr…)

Null pointer fun
Use-then-check: 102 bugs, 4 false

Contradiction/redundant checks (24 bugs, 10 false)

/* 2.4.7: drivers/char/mxser.c */

unsigned flags;
if

struct mxser_struct *info = tty->driver_data;

(!tty || !info->xmit_buf)
return 0;

/* 2.4.7/drivers/video/tdfxfb.c */
fb_info.regbase_virt = ioremap_nocache(...);
if(!fb_info.regbase_virt)

return -ENXIO;
fb_info.bufbase_virt = ioremap_nocache(...);
/* REDUNDANT check */
if(!fb_info.regbase_virt) {

iounmap(fb_info.regbase_virt);

Assertion: Soundness is often a distraction
Soundness: Find all bugs of type X.
– Not a bad thing. More bugs good.
– BUT: can only do if you check weak properties.

What soundness really wants to be when it grows up:
– Total correctness: Find all bugs.
– Most direct approximation: find as many bugs as possible.

Opportunity cost:
– Diminishing returns: Initial analysis finds most bugs
– Spend time on what gets the next biggest set of bugs
– Easy experiment: bug counts for sound vs unsound tools.

Soundness violates end-to-end argument:
– “It generally does not make much sense to reduce the

residual error rate of one system component (property)
much below that of the others.”

Static vs dynamic bug finding
Static: precondition = compile (some) code.
– All paths + don’t need to run + easy diagnosis.
– Low incremental cost per line of code
– Can get results in an afternoon.
– 10-100x more bugs.

Dynamic: precondition = compile all code + run
– What does code do? How to build? How to run?
– Runs code, so can check implications.
– Good: Static detects ways to cause error, dynamic can

check for the error itself.
Result:
– Static better at checking properties visible in source,

dynamic better at properties implied by source.

Open Q: how to get the bugs that matter?
Myth: all bugs matter and all will be fixed
– *FALSE*
– Find 10 bugs, all get fixed. Find 10,000…

Reality
– All sites have many open bugs (observed by us & PREfix)
– Myth lives because state-of-art is so bad at bug finding
– What users really want: The 5-10 that “really matter”

General belief: bugs follow 90/10 distribution
– Out of 1000, 100 (10? or 1?) account for most pain.
– Fixing 900+ waste of resources & may make things worse

How to find worst? No one has a good answer to this.
– Possibilities: promote bugs on executed paths or in code

people care about, …

Open Q: Do static tools really help?

– Danger: Opportunity cost.
– Danger: Deterministic canary bugs to non-deterministic.

Bugs found

Bad
behavior

The optimistic hope

Bugs found

The null hypothesis

Bad
behavior

Bugs found

An Ugly Possibility

Bad
behavior

Summary
Effective static analysis of real code
– Write small extension, apply to code, find 100s-1000s of

bugs in real systems
– Result: Static, precise, immediate error diagnosis
– One person writes, imposes on all code.

Belief analysis: broader checking
– Using programmer beliefs to infer state of system,

relevant rules
– Key feature: find errors without knowing truth

Found lots of serious bugs everywhere.

Free trial (or job!):
– www.coverity.com

	System-specific static bug finding: tricks, (bitter) experience, open problems.
	One-slide of background.
	Background: System-specific static analysis
	A bit more detail
	No X after Y: do not use freed memory
	High bit: Works well.
	History of the world as coverity knows it.
	A partial list of 100 customers…
	Prevent Library of Checkers
	Talk overview
	Goal: find as many serious bugs as possible
	Cross-checking program belief systems
	Internal Consistency: finding security holes
	An example
	MAY beliefs
	How to weigh MAY beliefs
	Statistical: Deriving deallocation routines
	Talk Overview
	Weird things that surprise academics trying to commercialize a static checking tool.
	A naïve view
	Myth: the C (or C++) language exists.
	Some bad examples to find in headers
	Microsoft example: precompiled headers
	Solution: pre-preprocessing rewrite rules.
	What this all means concretely.
	Academics don’t understand money.
	Some experience.
	“No, your tool is broken: that’s not a bug”
	Laws of static bug finding
	Some cursory static analysis experiences
	Myth: more analysis is always better
	No bug is too stupid to check for.
	One of the best stupid checks: Deadcode
	Internal null: trivial, amazingly effective.
	Null pointer fun
	Assertion: Soundness is often a distraction
	Static vs dynamic bug finding
	Open Q: how to get the bugs that matter?
	Open Q: Do static tools really help?
	Summary

