
CASCON 2010 SCC

The Recent Trend to
Assurance Cases – Pros

and Cons

Tom Maibaum
Alan Wassyng, Mark Lawford, Hans Bherer

McMaster University

Software Certification

  There are increasing problems related to
software use in critical systems

  There are increasing problems for critical
systems regulators

  Software is intrinsically different in the way it
goes wrong – and we must cope with that

  But does this give us licence to approach
regulation in a way which is different than
used by classical engineers?

1

Certification:
Product vs Process

  Process based or product based
 Process essential to company for developing good

software
 Should be irrelevant in certifying software applications

  We check process because we can –
examining evidence related to the product is
difficult – in fact, an open research topic

  A good process is not a guarantee of a
quality product; at best it offers an increased
probability of quality

Certification:
Product vs Process

3

Bloomfield & Bishop:
“… what has been achieved, not how hard
you have tried” (our emphasis)

Certification:
Product vs Process

  We propose a product based approach:
 Model entity in terms of measurable attributes

characterising it
 Measure value associated with each attribute
 Aggregate measured values
 Make engineering decision based on aggregated

value (perhaps to issue a licence)

  If only life were that simple! 
  How do we identify the relevant attributes?
  How do we “measure” safety?

4

What Engineers Do and
SEs (mostly) Don’t Do

  Should what SEs do be that different form what
classical engineers do?
 Classical engineers have highly prescriptive, highly

domain specific, highly product focused standards
for certification

 Properties to be determined, and sometimes the
exact analysis method to be used, are defined in
detail (possibly by reference to standards)

  In contrast, software related standards are very
generic, focus on process elements and say
almost nothing about the products manipulated
by the process and their properties

Safety Cases

  Significant product focus
  Structured approach in which we

 Make safety claims
 Present arguments
 Use evidence related to or derived from the product

  Mandated in the UK
 Defence standards, Air traffic management

  Recommended in an influential (US) NAS
report

 Jackson et al: Software for Dependable Systems

6

Why Safety Cases?

  Reasons pro Safety Cases
  “Demonstrates” that safety properties are satisfied &

risks mitigated (?)
 Mechanism for efficient review & involves all

stakeholders
 Provides a focus & rationale for safety activities
 Demonstrates discharge of duty to public &

shareholders
 Allows for application of different standards at

different times

 Supports innovation (radical design) (?)

7

Bloomfield & Bishop again

Why Safety-Cases?

  Problems with prescriptive regulation
 Safety may be seen as the regulator’s responsibility
 Built on past experience – may not be current enough
 Encodes current best practice that may eventually

stifle progress
  If overly restrictive may be barrier to open markets

  I think I heard this one recently … 
 Can adversely affect cost & quality

 You can see the headline: SAFETY COSTS TOO
MUCH!

8

Bloomfield & Bishop (2010), citing Robens (1972), Cullen (1990))

Why Safety Cases?
  The original motivation for safety cases

produced a framework/approach for the
structural organization of the safety argument

  It was designed to be high level and to be
applied in many domains. It was certainly not
software specific

  It is safety oriented – still true to a large extent
for the assurance case approach currently
being explored, for example, by John Knight

9

(Software) Engineering
  Engineers have a duty to society to build

effective (and cost-effective) artifacts that do
not jeopardize public safety

  They use a variety of methods, heuristics and
techniques to do this, and often use
mathematical analysis to model and predict
behaviour

  They are often extremely prescriptive in their
regulations and in accepted professional
practice

10

Software Engineering

  Is this really engineering?
  It should be!
  Much of the time we seem to believe in the

rigour, and methods, and mathematics
  We fall down badly in a few areas:

 Empirical basis for standards
 Empirical confirmation of efficacy
 Measurement
 Prescription

11

Empirical Software Engineering

  Most of our software standards are
anecdotal – this is a (poor) substitute for
being based on empirical evidence

  We cannot really talk about the efficacy of
our processes with any sort of authority –
most of our processes are judged again on
anecdotal evidence – sometimes very biased

  Well-founded software experiments are
amazingly few in our literature

12

Measurement

  There are a number of excellent works on
measurement and metrics in software
engineering – and in spite of these, we have
very few accepted measures related to the
quality of a software product

  No wonder we rely on checking adherence
to process for software certification – we do
not yet know how to judge (measure) the
products

13

Prescription

  One of the major points of this talk!
  Most engineering regulation is prescriptive
  Much in engineering practice is prescriptive
  Engineers do this because:

  They can (they have empirical and theoretical
evidence)

  It is safe – conservative maybe, but safe definitely
  It takes into account the varying capabilities of

practicing engineers

14

Civil Engineering Example

  Civil Engineers use Engineering Codes
  For example, the CSA Standard CAN3-

A23.3, Design of Concrete Structures for
Buildings
  15.4.1 The external moment on any section of a footing shall be

determined by passing a vertical plane through the footing and computing
the moment of the forces acting over the entire area of the footing on one
side of that vertical plane

 Prescriptive and conservative

15

Civil Engineering Example

  19.2.1 Elastic behaviour shall be an accepted basis for
determining internal forces and displacements of thin shells.
This behaviour may be established by computations based on
an analysis of the uncracked concrete structure in which the
material is assumed linearly elastic, homogeneous, and
isotropic. Poisson's ratio of concrete may be assumed to be
equal to zero

  19.3.1 The specified compressive strength of concrete, t’c, at 28
days shall be not less than 20MPa

$Conservative, specifies acceptable assumptions and
includes prescriptive requirements on materials

16

Civil Engineering Example
17

Even complex seismic design

 Prescriptive and conservative and can be checked for
compliance during and after

Lessons from Being Civil

  In the balance between safety and creativity/
efficacy, safety always wins

  Accepted as a way of life in the profession
  Prescriptive regulation is updated frequently

– but not in a chaotic way
  Smart prescriptive regulation can be

incredibly powerful
 Canadian nuclear regulations – separate control and

safety

  “Code” applies to the complete domain
(concrete in our example)

18

Lessons from Being Civil

  The standard imposes constraints and
requirements on the product
 Compliance can be determined objectively since it is

defined in the context of the standard scientific
measurement framework

  The standard is unashamedly prescriptive on
analysis as well

  The standard is based on empirical
confirmation of theory

19

Downside of Safety-Cases

  Engineers classically rely on established and
recognized methods for designing artifacts -
Vincenti calls this normal design

  These assurances are backed up by
standard analyses and measurement
procedures.

  In contrast, radical design is where some
element of a normal design method is
absent, say because untried technology is
used

20

Downside of Safety Cases:
a Case of NSV?

  Software engineers have avoided developing
a normal design culture

  Safety cases seem to be promoting the
software industry’s avoidance of normal
design

  This makes the regulators’ task difficult, and
their processes become unpredictable &
unreliable

  Regulators need normal evaluation methods
– they will not be able to cope with hundreds
of one off safety cases

21

Downside of Safety Cases

  It is not good enough that the producer of the
product supplies the evidence and the
supporting arguments in the safety-case

  What matters is that the certifying agent then
cannot expect the same type of evidence
and argument throughout the agent’s case
load – thus agents have little chance of
building essential expertise (safety-case
templates may help – but probably not
enough)

22

Downside of Safety Cases

  Safety cases quite clearly have been
designed to present evidence of safety. In
some domains, efficacy is also extremely
important

  Medical devices in the US have to be proven
to be both effective and safe

  There is almost always some tension
between efficacy and safety, and safety
cases were not created to deal with this
complication

23

Are Safety Cases Safe?

  Finally, how do we “measure” a safety/
assurance case for safety and efficacy?

  Given a safety/assurance case, how should
a regulator decide to accept it or not?

  Is the argument presented in the safety case
sound? How do we judge?

  All the work on safety cases has given us
very few tools for making such judgments

A Conjecture
  There is a “tried and true” method that may be

applicable: scientific explanation
  Scientists use rigorous reasoning based on

theories of science and contingent facts
(observations) to
 Explain some observed phenomenon, or
 Make an observable prediction about the

consequences of a theory, given contingent facts

  A safety case may be seen as a prediction (of
safety properties) based on underlying theory
and contingent facts related to the system/
software

Scientific Explanation

  If a safety case is not an example of
scientific explanation, I don’t know what it is!

  Argumentation (the standard way of
structuring safety cases) invites judgment:
what is the basis of this?

26

Sound
reasoning
method

Scientific Explanation

  So, a grand challenge, just because they are
in fashion and I am a dedicated follower of
fashion!

 Systematise the reasoning behind scientific
explanation so that you can automate it!

Conclusions

  Safety cases are proposed as THE way of certifying
systems – and that software specific certification
processes can be used within the context of safety
cases

  We like safety cases as a way of structuring safety
arguments, but the non prescriptive approach
exemplified by safety cases will trickle down into the
software specific process – ruining our chance of
developing effective, predictable, certification methods

  And there is the small problem of assessing safety
cases on a repeatable, objective basis

28

Conclusions

  The arguments against prescription given by
safety case proponents seem thoroughly
unconvincing

  Prescriptive regulation does not need to be
overly static – it usually is not

  The point on responsibility has some merit –
but is true in all engineering jurisdictions and
does not seem to have been a real problem

  These arguments tend to favour creativity
and progress over safety – strange for safety
case proponents!

29

