
Time for High-Confidence
Software Systems

Edward A. Lee
Robert S. Pepper Distinguished Professor
UC Berkeley

Keynote talk

11th Annual Conference on
High Confidence Software and Systems,
Annapolis, Maryland, May 1-6, 2011

Key Collaborators:
• Steven Edwards
• Sungjun Kim
• Isaac Liu
• Slobodan Matic
• Jan Reinke
• Sanjit Seshia
• Mike Zimmer
• Jia Zou

Lee, Berkeley 3

This talk:

¢  Verifying software is not enough.

¢  We need to verify systems.

¢  And this requires rethinking software abstractions.

¢  Particularly: it’s about time.

Lee, Berkeley 4 Courtesy of Kuka Robotics Corp.!

Cyber-Physical Systems (CPS):
Orchestrating networked computational
resources with physical systems

Courtesy of Doug Schmidt!

Power
generation and
distribution

Courtesy of
General Electric

Military systems:

E-Corner, Siemens

Transportation
(Air traffic
control at
SFO) Avionics

Telecommunications

Factory automation

Instrumentation
(Soleil Synchrotron)

Daimler-Chrysler

Automotive

Building Systems

Lee, Berkeley 5

Claim

For CPS, programs do not adequately specify behavior.

Lee, Berkeley 6

A Story

The Boeing 777 was Boeing’s first fly-by-wire aircraft,
controlled by software. It is deployed, appears to be
reliable, and is succeeding in the marketplace. Therefore,
it must be a success. However…

Boeing was forced to purchase and store an advance
supply of the microprocessors that will run the software,
sufficient to last for the estimated 50 year production run
of the aircraft and another many years of maintenance.

Why?

Lee, Berkeley 7

Lesson from this example:

Apparently, the software does not specify the behavior
that has been validated and certified!

Unfortunately, this problem is very common, even with
less safety-critical, certification-intensive applications.
Validation is done on complete system implementations,
not on software.

Lee, Berkeley 8

Problems that complicate analysis of system behavior:

Structure of a Cyber-Physical System

Messages from different
sources interleave

nondeterministically Sensors may be locked
out for an indeterminate

amount of time

Plat

Variability of execution
times affects results

(not just WCET)
Interrupt-driven I/O
disrupts timing

Platforms’ measurements
of time differ

A fault in a remote
component may disrupt a

critical local activity

A fault in a remote
component may
go undetected for
a long time

Etc…

Lee, Berkeley 9

A Key Challenge:
Timing is not Part of Software Semantics

Correct execution of a program in C, C#, Java, Haskell,
OCaml, etc. has nothing to do with how long it takes to do
anything. All our computation and networking abstractions
are built on this premise.

Programmers have to step outside the
programming abstractions to specify
timing behavior.

Lee, Berkeley 10

Execution-time analysis, by itself,
does not solve the problem!

Analyzing software for timing behavior requires:

• Paths through the program (undecidable)
• Detailed model of microarchitecture
• Detailed model of the memory system
• Complete knowledge of execution context
• Many constraints on preemption/concurrency
• Lots of time and effort

And the result is valid only for that exact
hardware and software!

Fundamentally, the ISA of the processor
has failed to provide an adequate abstraction.

C. Ferdinand et al., “Reliable and
precise WCET determination for a
real-life processor.” EMSOFT 2001.

Our first goal is to reduce
the problem so that this is
the only hard part.

Lee, Berkeley 11

Part 1: PRET Machines

¢  PREcision-Timed processors = PRET
¢  Predictable, REpeatable Timing = PRET
¢  Performance with REpeatable Timing = PRET

= PRET +

Computing With time

// Perform the convolution.
for (int i=0; i<10; i++) {
 x[i] = a[i]*b[j-i];
 // Notify listeners.
 notify(x[i]);
}

Lee, Berkeley 12

Dual Approach

¢  Rethink the ISA
l  Timing has to be a correctness property not a

performance property.

¢  Implementation has to allow for multiple realizations
and efficient realizations of the ISA
l  Repeatable execution times
l  Repeatable memory access times

Lee, Berkeley 13

Example of one sort of mechanism we would like:

tryin (500ms) {
 // Code block
} catch {
 panic();
}

jmp_buf buf;

if (!setjmp(buf)){
 set_time r1, 500ms
 exception_on_expire r1, 0
 // Code block
 deactivate_exception 0
} else {
 panic();
}

exception_handler_0 () {
 longjmp(buf)
}

If	
 the	
 code	
 block	
 takes	
 longer	
 than	

500ms	
 to	
 run,	
 then	
 the	
 panic()	

procedure	
 will	
 be	
 invoked.	

	

But	
 then	
 we	
 would	
 like	
 to	
 verify	

that	
 panic()	
 is	
 never	
 invoked!	
 Pseudocode	
 showing	
 the	
 mechanism	

in	
 a	
 mix	
 of	
 C	
 and	
 assembly.	

Lee, Berkeley 14

Extending an ISA with
Timing Semantics

[V1]	
 Best	
 effort:	
 	

set_time r1, 1s
// Code block
delay_until r1

[V2]	
 Late	
 miss	
 detec5on	
 	
 	

set_time r1, 1s
// Code block
branch_expired r1, <target>
delay_until r1

set_time r1, 1s
exception_on_expire r1, 1
// Code block
deactivate_exception 1
delay_until r1

[V3]	
 Immediate	
 miss	
 detec5on	
 	
 	

[V4]	
 Exact	
 execu5on:	
 	

set_time r1, 1s
// Code block
MTFD r1

Lee, Berkeley 15

To provide timing guarantees, we need
implementations that deliver repeatable timing

Fortunately, electronics technology
delivers highly reliable and precise
timing…

… but the overlaying software
abstractions discard it. Chip architects
heavily exploit the lack of temporal
semantics.

// Perform the convolution.
for (int i=0; i<10; i++) {
 x[i] = a[i]*b[j-i];
 // Notify listeners.
 notify(x[i]);
}

Lee, Berkeley 16

To deliver repeatable timing, we have to
rethink the microarchitecture

Challenges:

l  Pipelining
l  Memory hierarchy
l  I/O (DMA, interrupts)
l  Power management (clock and voltage scaling)
l  On-chip communication
l  Resource sharing (e.g. in multicore)

Lee, Berkeley 17

First Problem: Pipelining

Hennessey and Patterson, Computer Architecture: A Quantitative Approach, 4th edition, 2007.

Lee, Berkeley 18

Pipeline Hazards

Hennessey and Patterson, Computer Architecture: A Quantitative Approach, 4th edition, 2007.

Lee, Berkeley 19

An Alternative: Pipeline Interleaving

Stall pipeline Dependencies result in complex
timing behaviors

Repeatable
timing

behavior of
instructions

Thread-interleaved pipeline:

Traditional pipeline:

Lee, Berkeley 20

Pipeline Interleaving
(Aka Hardware threads,
related to hyperthreading)
¢  History:

l  CDC 6600
l  Denelcore HEP
l  …
l  Sandbridge Sandblaster
l  XMOS

¢  Tradeoffs:
+ Simpler hardware (faster clocks)
+ Repeatable timing
+ Interference-free multithreading
- Slower single-thread performance

Lee and Messerschmitt, Pipeline
Interleaved Programmable DSPs,
ASSP-35(9), 1987.

Lee, Berkeley 21

Second Problem: Memory Hierarchy

¢  Register file is a temporary memory under program control.
l  Why is it so small?

¢  Cache is a temporary memory under hardware control.
l  Why is replacement strategy application independent?

PRET principle: any temporary memory is under program control.

Hennessey and Patterson, Computer Architecture: A Quantitative Approach, 4th edition, 2007.

Instruction word size.

Separation of concerns.

Lee, Berkeley 22

Hardware
thread Hardware

thread Hardware
thread

PRET principle implies using a
scratchpad rather than a cache.

Hardware
thread

registers

scratch
pad memory I/O devices

Interleaved
pipeline with one
set of registers

per thread

SRAM
scratchpad

shared among
threads

DRAM main
memory

Lee, Berkeley 23

What about the main memory?
Opportunity: DRAM for main memory is highly parallel

Micron corp.

DDR2: Four pipelined banks
DDR3: Eight pipelined banks
DDRn: 2n pipelined banks?

Lee, Berkeley 24

Hardware
thread Hardware

thread Hardware
thread

Resulting PRET Architecture
We have realized this in PTArm,
a soft core on a Xilinx Virtex 5 FPGA

Hardware
thread

registers

scratch
pad

memory

I/O devices

Interleaved
pipeline with one
set of registers

per thread

SRAM
scratchpad

shared among
threads

DRAM main
memory,

separate banks
per thread

memory
memory

memory

Note inverted memory
compared to multicore!

Fast, close memory is
shared, slow remote
memory is private!

Lee, Berkeley 25

Memory
Architecture in
PTArm goes
further

¢  Dual ported instruction/data scratchpads
¢  Load/stores can go to scratchpads or main memory
¢  DMA

l  One DMA unit per hardware thread
l  Thread can initiate DMA scratchpad-main transfers
l  Thread continues executing from scratchpad
l  Thread blocks on access to either DRAM or the affected

region of the scratchpad until DMA is complete.
¢  DRAM refreshes are software controlled

Lee, Berkeley 26

Multicore PRET

In today’s multicore
architectures, one thread can
disrupt the timing of another
thread even if they are
running on different cores
and are not communicating!

Our preliminary work shows that control over timing
enables conflict-free routing of messages in a network on
chip, making it possible to have non-interfering programs
on a multicore PRET.

Lee, Berkeley 27

Status of the PRET project

¢  MURI & NSF funding has run out.
l  Therefore, the project has successfully concluded.

¢  Results:
l  PTArm implemented on Xilinx Virtex 5 FPGA.
l  UNISIM simulator of the PTArm facilitates experimentation.
l  DRAM controller with repeatable timing and DMA support.
l  PRET-like utilities implemented on COTS Arm.

¢  Much still to be done:
l  Realize MTFD, interrupt I/O, compiler toolchain,

scratchpad management, etc.

Lee, Berkeley 28

A Key Next Step:
Parametric PRET Architectures

ISA that admits a variety of implementations:
¢ Variable clock rates and energy profiles
¢ Variable number of cycles per instruction
¢ Latency of memory access varying by address
¢ Varying sizes of memory regions
¢ …

A given program may meet deadlines on only some
realizations of the same parametric PRET ISA.

set_time r1, 1s
// Code block
MTFD r1

Lee, Berkeley 29

Realizing the MTFD instruction on a
parametric PRET machine

The goal is to make software that will run correctly on a variety of
implementations of the ISA, and that correctness can be checked for each
implementation.

set_time r1, 1s
// Code block
MTFD r1

Lee, Berkeley 30

PRET Publications

¢  Bui, E. A. Lee, I. Liu, H. D. Patel and J. Reineke, “Temporal Isolation
on Multiprocessing Architectures,” DAC 2011.

¢  D. Bui, H. Patel, and E. Lee, “Deploying hard real-time control
software on chip-multiprocessors,” RTCSA 2010.

¢  S. Edwards, S. Kim, E. A. Lee, I. Liu, H. Patel and M. Schoeberl, “A
Disruptive Computer Design Idea: Architectures with Repeatable
Timing,” ICCD 2009.

¢  B. Lickly, I. Liu, S. Kim, H. D. Patel, S. A. Edwards and E. A. Lee,
“Predictable programming on a precision timed architecture,”
CASES 2008.

¢  S. Edwards and E. A. Lee, "The Case for the Precision Timed (PRET)
Machine," in the Wild and Crazy Ideas Track of DAC, June 2007.

http://chess.eecs.berkeley.edu/pret/

Lee, Berkeley 31

Part 2: How to get the Source Code?

The input (mostly likely C) will ideally be generated from a model, like Simulink
or SCADE. The model specifies temporal behavior at a higher level than code
blocks, and it specifies a concurrency model that can limit preemption points.
However, Simulink and SCADE have naïve models of time.

Lee, Berkeley 32

Problems that complicate analysis of system behavior:

Recall Structure of a Cyber-Physical System

Messages from different
sources interleave

nondeterministically Sensors may be locked
out for an indeterminate

amount of time

Plat

Variability of execution
times affects results

(not just WCET)
Interrupt-driven I/O
disrupts timing

Platforms’ measurements
of time differ

A fault in a remote
component may disrupt a

critical local activity

A fault in a remote
component may
go undetected for
a long time

Etc…

Lee, Berkeley 33

Ptides: First step:
Time-stamped messages.

Messages carry time
stamps that define their

interleaving

Lee, Berkeley 34

Ptides: Second step:
Network time synchronization

GPS, NTP, IEEE 1588,
time-triggered busses,
etc., all provide some
form of common time
base. These are
becoming fairly common.

Assume bounded
clock error

Assume bounded
clock error e

Assume bounded
clock error e

Lee, Berkeley 35

Ptides: Third step:
Bind time stamps to real time at sensors and actuators

Input time stamps are
≥ real time

Input time stamps are
≥ real time

Output time stamps
are ≤ real time

Output time stamps
are ≤ real time Messages are

processed in time-
stamp order.

Clock synchronization
gives global meaning to

time stamps

Lee, Berkeley 36

Global latencies between sensors and actuators become
controllable, which enables analysis of system dynamics.

Ptides: Fourth step:
Specify latencies in the model

Model includes
manipulations of time
stamps, which control

latencies between
sensors and actors

Actuators may be
designed to interpret
input time stamps as
the time at which to

take action. Feedback through the physical world

Lee, Berkeley 37

Ptides: Fifth step
Safe-to-process analysis (ensures determinacy)
Safe-to-process analysis guarantees that the generated code obeys time-stamp
semantics (events are processed in time-stamp order), given some assumptions.

Assume bounded
network delay d

Assume bounded
clock error

Assume bounded
clock error e

An earliest event with
time stamp t here can
be safely merged when
real time exceeds
t + s + d + e – d2

Assume bounded
clock error e

Assume bounded
sensor delay s

Application
specification of

latency d2

Lee, Berkeley 38

Ptides Schedulability Analysis
Determine whether deadlines can be met

Schedulability analysis incorporates computation times to determine
whether we can guarantee that deadlines are met.

Deadline for delivery of
event with time stamp t

here is t – c3 – d2

Deadline for delivery
here is t

Assume bounded
computation time c1

Assume bounded
computation time c3

Assume bounded
computation time c2

Lee, Berkeley 39

PtidyOS: A lightweight microkernel supporting
Ptides semantics

Current prototype runs on a COTS
Arm platform (Luminary Micro)
with rudimentary support for IEEE
1588 network time
synchronization. Occupies about
16 kbytes of memory.

Currently porting to Renesas and
PRET platforms.

Luminary
Micro
8962

An interesting property of
PtidyOS is that despite being
highly concurrent, preemptive,
and EDF-based, it does not
require threads.
A single stack is sufficient!

Lee, Berkeley 40

Workflow
Structure

HW Platform Software
Component

Library

Ptides Model Code
Generator

PtidyOS

Code

Plant Model

Network Model

HW in the
Loop

Simulator

Causality
Analysis

Program
Analysis

Schedulability
Analysis

Analysis	

Mixed
Simulator

Ptolemy II Ptides domain

Ptolemy II Discrete-event,
Continuous, and
Wireless domains

Luminary
Micro
8962 IEEE 1588 Network

time protocol

Lee, Berkeley 41

A Test Case
for PtidyOS

Tunneling Ball Device
–  sense ball
–  track disk
–  adjust trajectory

This device, designed by Jeff Jensen,
mixes periodic, quasi-periodic, and
sporadic real-time events.

Lee, Berkeley 42

Tunneling Ball Device in Action

Lee, Berkeley 43

Tunneling Ball Device – 10 rps

Lee, Berkeley 44

Tunneling Ball Device
Mixed event
sequences

Periodic Events

Quasi Periodic Events

Sporadic Events

Lee, Berkeley 45

Ptides Project Status

¢  Seed funding from ARL got the project going.
¢  Ongoing NSF effort (CPS Medium)

l  Sanjit Seshia focused on WCET & schedulability analysis
l  Ptolemy II-based simulator supports multiform clocks
l  PtidyOS being prepped for open-source release

Lee, Berkeley 46

Ptides Publications
¢  Y. Zhao, J. Liu, E. A. Lee, “A Programming Model for Time-

Synchronized Distributed Real-Time Systems,” RTAS 2007.

¢  T. H. Feng and E. A. Lee, “Real-Time Distributed Discrete-Event
Execution with Fault Tolerance,” RTAS 2008.

¢  P. Derler, E. A. Lee, and S. Matic, “Simulation and implementation of
the ptides programming model,” DS-RT 2008.

¢  J. Zou, S. Matic, E. A. Lee, T. H. Feng, and P. Derler, “Execution
strategies for Ptides, a programming model for distributed
embedded systems,” RTAS 2009.

¢  J. Zou, J. Auerbach, D. F. Bacon, E. A. Lee, “PTIDES on Flexible Task
Graph: Real-Time Embedded System Building from Theory to
Practice,” LCTES 2009.

¢  J. C. Eidson, E. A. Lee, S. Matic, S. A. Seshia and J. Zou, “Time-centric
Models For Designing Embedded Cyber-physical Systems,” ACES-
MB 2010.

http://chess.eecs.berkeley.edu/ptides/

Lee, Berkeley 47

Conclusions

Today, timing behavior is a property only of realizations of
software systems.

Tomorrow, timing behavior will be a semantic property of
programs and models.

Raffaello Sanzio da Urbino – The Athens School

Overview Reference:
E. A. Lee. Computing needs time. CACM, 52(5):70–79, 2009

Lee, Berkeley 48

Distributed PTIDES Relies on Network Time
Synchronization with Bounded Error

This may become
routine!
With this PHY, clocks
on a LAN agree on the
current time of day to
within 8ns, far more
precise than older
techniques like NTP.

A question we are
addressing at
Berkeley: How does
this change how we
develop distributed
CPS software?

Press Release October 1, 2007

Lee, Berkeley 49

An Extreme Example: The Large Hadron Collider

The WhiteRabbit project at CERN is synchronizing the clocks of computers
10 km apart to within about 80 psec using a combination of IEEE 1588 PTP
and synchronous ethernet.

