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Abstract
Unlike benchmarks that focus on performance or reliability
evaluations, a benchmark for computer security must neces-
sarily include sensitive code and data. Because these artifacts
could damage systems or reveal personally identifiable infor-
mation about the users affected by cyber attacks, publicly dis-
seminating such a benchmark raises several scientific, ethical
and legal challenges. We propose the Worldwide Intelligence
Network Environment (WINE), a security-benchmarking ap-
proach based on rigorous experimental methods. WINE in-
cludes representative field data, collected worldwide from
240,000 sensors, for new empirical studies, and it will enable
the validation of research on all the phases in the lifecycle
of security threats. We tackle the key challenges for security
benchmarking by designing a platform for repeatable experi-
mentation on the WINE data sets and by collecting the meta-
data required for understanding the results. In this paper, we
review the unique characteristics of the WINE data, we dis-
cuss why rigorous benchmarking will provide fresh insights
on the security arms race and we propose a research agenda
for this area.

1. Introduction
The security-related data sets that are available today are in-
sufficient for answering many challenging questions or for
rigorous experimental research. For example, little is known
about the origins and prevalence of zero-day attacks, because
the existing data on malware dissemination does not reach
back in time before the discovery of the malware. We currently
do not understand how scam sites conceal their presence and
move to avoid detection, for lack of historical information on
malicious URLs. So far, we have not been able to follow a se-
curity vulnerability over the course of its entire life—from a
programming bug that evades testing, through its stealth ex-
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ploitation in zero-day attacks, its discovery and description in
a public advisory, the release of a patch for the vulnerability
and of anti-virus signatures, the automatic generation of ex-
ploits based on the patch, and to the final race between these
attacks and the remediation measures introduced by the secu-
rity community. Answering such questions requires the anal-
ysis and the correlation of multiple data sets, collected inde-
pendently from diversified sensors. The lack of such data sets
prevents us from gaining the deep insights needed for tipping
the balance of the security arms race from the attackers to the
defenders.

Moreover, data sets used for validating computer secu-
rity research are often mentioned in a single publication and
then forgotten. For example, real malware samples are readily
available on the Internet, and they are often used for validat-
ing research results. However, this experimental method does
not accommodate a sound validation of the research, because
other investigators do not have access to the same collection
of samples and cannot reproduce the results. This prevents rig-
orous comparisons between alternative approaches proposed
in the scientific literature. Additionally, the malware samples
alone do not tell the whole story. Ancillary field data is needed
to understand the malware lifecycle and the economic incen-
tives of cybercrime.

We aim to fill these gaps by (i) making representative field
data, which covers the entire lifecycle of malware, available to
the research community, and (ii) developing a platform for re-
peatable experimentation around these data sets. We build on
the lessons learned in other research fields where benchmark-
ing is well established (e.g. networking and databases), while
identifying some of the key differences for security bench-
marking.

We center our benchmarking approach around the data sets
available in WINE1, Symantec’s program for sharing data
with the research community. For example, WINE includes
information on unknown binaries found on the Internet. The
users who opt in for the reputation-based security features
of Symantec products accept to share the list of binary files
downloaded on their machines in exchange for a whitelist of
binaries with good reputation. The data includes historical in-

1 More information on accessing the WINE data is available at http://www.
symantec.com/WINE.
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Figure 1. The WINE data sets enable the study of the entire lifecycle of security threats. By correlating research findings with
additional data sets, available from other sources, experimenters can assemble an end-to-end image of the security arms race.

formation on 1 billion files that the security community has
not yet classified as either benign or malware. The histori-
cal records start when each file appeared on the Internet (es-
timated through the discovery timestamps assigned by the 50
million active instances of the reputation feature) and can pro-
vide unique insights on the mechanisms of zero-day attacks.
Similarly, Symantec tracks the spread of known host-based
and network-based cyber threats, filters spam out of approxi-
mately one third of the world’s email and has assembled per-
haps the largest collection of malware samples. By combining
five distinct data sets, sampled from this collection of field
data, WINE provides an overview of the security-threat land-
scape (see Figure 1).

We are currently developing a data storage and analysis
platform, which aims to ensure experimental repeatability by
archiving snapshots of the data used in each experiment and
by providing researchers with tools for recording all the infor-
mation required for reproducing the results. This will enable
comparisons of the effectiveness, performance and scalability
of published techniques. Moreover, WINE will include meta-
data allowing researchers to establish whether a data set is
representative for the real-world cyber threats. To protect the
sensitive information included in the data and to ensure the re-
producibility of experimental results, all the experiments and
empirical studies will be conducted on the WINE platform
hosted by Symantec Research Labs.

Our ultimate goal is to develop a rigorous benchmark for
computer security research. Because defensive mechanisms
can make different trade-offs, which might be appropriate
for different systems and settings, we will avoid reporting a
single number indicating which mechanism is the best. Like
the TPC and SPEC benchmarks, which focus on performance

evaluation, our security benchmark will not be definitive. The
WINE data sets must be updated periodically in order to
reflect the frequent changes in the security threat landscape.

While the WINE data sets are currently available to the re-
search community, the data per se is not sufficient for defining
a rigorous benchmark. In this position paper, our goal is not
to present benchmark results or to discuss the lessons learned
from this effort. Instead, we make two contributions:

• We propose a research agenda for security benchmarking,
by identifying the main challenges (Section 2) and several
open questions that could be answered once these chal-
lenges are overcome (Section 4);

• We propose an approach for benchmarking computer se-
curity (Section 3), which combines the WINE data sets
with a platform for rigorous experimentation. We explain
WINE’s data sharing model, and we outline solutions to
some of the key challenges for security benchmarking.

Our data sharing program does not focus exclusively on
computer security—enabling, for example, research on soft-
ware reliability or on machine learning techniques for billion-
node graphs. Moreover, the results of experimental research
will guide the inclusion of additional data sets in WINE. We
believe that, in the future, the WINE data will provide key in-
sights for the fields of security, dependability, machine learn-
ing and software engineering.

2. Challenges for benchmarking security
Unlike in the systems community, where data sets have some-
times outlived the system for which they were collected,2 the

2 For example, in case of the Sprite filesystem trace [Baker et al. 1991].



data sets used for validating computer-security research are
often forgotten after the initial publication referencing them.
This experimental method does not accommodate an inde-
pendent verification of results and meaningful comparisons
against the prior art. The lack of standard benchmarks for
computer security is the result of scientific, ethical, and le-
gal challenges for publicly disseminating security-related data
sets. In this paper we focus on the scientific challenges, but we
also review other challenges that are likely to have an impact
on the benchmarking techniques.

2.1 Scientific challenges
C1 A benchmark for computer security must be based on

field data. Some benchmarking efforts in the past have
addressed privacy concerns by generating synthetic data,
based on the observed statistical distributions of the raw
data samples collected [Lippmann et al. 2000]. Moreover,
synthetically generated data provides considerable flexi-
bility, allowing an experimenter to explore all the behav-
ioral corner cases of the system-under-test [DeWitt 1993].
For security-oriented benchmarks, however, it is difficult
to relate the benchmarking results to the real-world per-
formance of the system-under-test. For example, the false
positive rate of intrusion detection systems is influenced
by the background noise, which should be consistent with
the background data that the system is likely to encounter
in a real deployment [McHugh 2000].

C2 The benchmarking approach must ensure experimental
repeatability. The data sets used in the experiments must
be archived for future reference, and they must be con-
sidered again in research projects attempting quantitative
comparisons against the prior results. Moreover, in order
to make it possible for future projects to reproduce the ex-
perimental results, the benchmark must provide tools for
recording the experiment metadata—e.g., the hypotheses
tested, the experimental design, the scripts and procedures
used for data analysis, the statistical apparatus employed.

C3 The benchmark must be representative of the real-world
threat landscape. Any large data collection can ensure the
statistical significance of the experimental results. How-
ever, the validity of these results can still be questioned
in cases where small mutations of the test data can dras-
tically change the outcome of the experiment. The bench-
mark should provide the collection metadata needed for
establishing the real-world situations that each data set
is representative of. Moreover, the benchmark must re-
main relevant, in spite of the frequent changes in the cy-
ber threat landscape and of data filtering at multiple lev-
els (see also Challenges C5 and C6). We point out that
updating the benchmark regularly does not conflict with
C2. The benchmark must specify a predictable process
for data collection [Camp et al. 2009], while preserving
the reference data sets employed in prior experiments.
Similarly, as security metrics are not well understood, the
benchmark must suggest metrics in order to enable direct

comparisons among similar techniques, but must allow re-
searchers to define improved metrics that are more rele-
vant for the hypotheses tested.

C4 Experiments must be conducted at a realistic scale. Secu-
rity is difficult to measure and assess objectively because
it represents an end-to-end property of the system. Some
metrics (e.g. resistance to intrusions) can not be measured
directly and must be approximated through large-scale ob-
servations of the whole system, in order to achieve precise
estimations.

C5 Benchmarking must take the information quality into
account. In many large scale collections, uncertainty
about the data is explicit. For example, as heuristics and
machine-learning techniques are used, increasingly, for
detecting polymorphic malware, the labels applied to the
binaries analyzed are no longer a black-and-white deter-
mination, but, rather, they express a certain level of confi-
dence that the binary is malicious. In a commercial prod-
uct, where monitoring and logging represent secondary
concerns, the submissions are throttled back, and some-
times truncated, in over to avoid overloading the users’
machines and to reduce the bandwidth costs incurred.
Moreover, the hash functions used for identifying binaries
may change, as the products evolve, and the techniques
used for identifying user machines are not always reli-
able. We must develop new query languages and analysis
tools that treat such information-quality metrics as first-
class entities.

2.2 Ethical challenges
C6 Do no harm. A benchmark for computer security must in-

clude sensitive code and data, which could damage com-
puter systems or could reveal personally identifiable in-
formation about the users affected by the cyber attacks
recorded. For example, the IP addresses of hosts initiating
network-based attacks could point to personal computers
that have been infected with malware, while the country
codes of the attack destinations reveal further sensitive in-
formation. Binary samples of malware must not be made
freely available on the Internet. It is challenging to deter-
mine, a priori, how to sample or filter the raw data col-
lected in order to meet these challenges.

2.3 Legal challenges
C7 Compliance with privacy laws often restricts the data col-

lection, storage and exchange. The field data needed for
security benchmarking (see Challenge C1) is collected
from real networks and users. There are several laws that
limit access to network traffic or that regulate the stor-
age of this information. In the United States, for example,
the Wiretap Act prohibits the interception of content of
electronic communications, the Pen/Trap statute prohibits
the real-time interception of non-content, and the Stored
Communications Act prohibits providers from knowingly
disclosing their customer’s communications. In contrast



to HIPAA, which restricts disclosures of health informa-
tion but provides means for researchers to obtain relevant
information, the privacy laws contain no exceptions for
research. The PREDICT project [DHS 2011b], sponsored
by the Department of Homeland Security, could provide a
framework for addressing this challenge.

3. A benchmark for computer security
We build upon the lessons learned from the failures and suc-
cesses of the previous efforts for benchmarking computer se-
curity [for example: Camp et al. 2009, Leita et al. 2010,
Lippmann et al. 2000, Maxion and Townsend 2004, McHugh
2000] and for building platforms allowing rigorous measure-
ments and experimentation [for example: DeWitt 1993, Eide
et al. 2007, Paxson 2004]. In addition to archiving snapshots
of the data sets used in each experiment, we will store the
scripts used for aggregating and analyzing the data, and we
will maintain a lab book that records all the steps taken by the
experimenter. This experimental metadata is essential for en-
suring the reproducibility of the results (challenge C2). Keep-
ing a lab book is a common practice in other experimental
fields, such as applied physics or cell biology.

The selection of the initial data sets for WINE was guided
by our goal to establish a benchmark for computer security
and by the needs expressed in the security community [Camp
et al. 2009]. However, the access to the WINE data is not re-
stricted to security researchers. WINE aims to aggregate the
data feeds collected by Symantec in order to enable experi-
mental research across a broad spectrum of disciplines, e.g.,
dependability, machine learning, software engineering, net-
working, economics, visual analytics.

3.1 Operational model
To protect the sensitive information included in the data sets,
WINE will only be accessed on-site at Symantec Research
Labs. While researchers will have access to the raw data col-
lected, we will not create a malware library for anyone to
download at will, and we will ensure that private information
is not disseminated in public (challenge C6). Moreover, some
aspects of the data collection process, such as the internal op-
eration of the various Symantec sensors, will not be disclosed
in detail. A snapshot of the data used in each experiment will
be archived, for future reference, and all the analysis and ex-
perimentation will be conducted on the WINE infrastructure
(described in Section 3.3). The researchers will retain all right,
title and interest to the research results.

More information on accessing WINE is available at
http://www.symantec.com/WINE.

3.2 The WINE data sets
WINE will provide access to a large collection of malware
samples, and to the contextual information needed to under-
stand how malware spreads and conceals its presence, how
it gains access to different systems, what actions it performs
once it is in control and how it is ultimately defeated. WINE

includes representative field data, collected at Symantec (chal-
lenge C1). WINE will include five data sets, summarized
in Table 1: binary-reputation data, email-spam data, URL-
reputation data, A/V telemetry and malware samples. These
data sets enable two research directions: (i) empirical stud-
ies for understanding each phase in the lifecycle of cyber-
attacks, and (ii) quantitative evaluations and comparisons of
attack prevention or detection techniques, for benchmarking
security systems.

Understanding the lifecycle of cyberattacks. WINE aims
to cover the entire lifecycle of malware attacks (see Figure 1).
For example, the binary-reputation data set enables—for the
first time, to the best of our knowledge—a study of the origins
and prevalence of zero-day attacks, which exploit vulnerabili-
ties that are unknown or unacknowledged publicly. Searching
the history of binary-reputation submissions for files that are
known to be malicious indicates for how long the file has ex-
isted in the wild before it was first detected (i.e., before the
security community created the corresponding anti-virus sig-
natures). The subsequent proliferation of the attack and the
effectiveness of the remediation mechanisms introduced (e.g.,
patches for the vulnerability exploited, A/V signatures for de-
tecting and blocking the attack) can be further traced in the
A/V telemetry data set.

Similarly, by correlating the URLs recorded in the email
spam samples, in the binary reputation and in the URL repu-
tation data sets, we can begin to understand how scam sites
conceal themselves to avoid detection (e.g., by moving to
a different IP address) and the effectiveness of the various
mechanisms for disseminating malware (e.g., spam, intru-
sions, drive-by downloads). The malware samples in WINE
illustrate the attackers’ aims—the actions that malware tries to
perform once it takes control of a host—, and by corroborating
these observations with data from the real-world victims of
these attacks we can gain insight into the economic incentives
of cybercrime. The data sets included in WINE are collected
independently, from diversified sensors, allowing researchers
to examine a phenomenon from multiple perspectives and to
improve the confidence in the conclusions we draw from these
investigations (challenge C3).

Moreover, by combining WINE with data from additional
sources, such as code repositories for open source software
that have known vulnerabilities, we can study a security threat
from the time when a programming bug introduces a vulnera-
bility until the time when the last exploit of that vulnerability
disappears from the A/V telemetry.

Benchmarking computer security. Because most of the
techniques developed in the security community can serve
both sides of the arms race, defensive mechanisms usually
aim to force attackers to do more work than defenders have
to do. WINE allows testing this, or similar, hypotheses for
existing security systems, by defining macro-benchmarks that
are representative for real-world workloads of systems aiming
to fight viruses, worms or botnets. For example, the telemetry
data can serve as the ground truth for heuristic threat-detection

http://www.symantec.com/WINE


Data set Sources Description

Binary reputation 50 million
machines

Information on unknown binaries—i.e., files for which an A/V signature has not yet
been created—that are downloaded by users who opt in for Symantec’s reputation-
based security program. This data can indicate for how long a particular threat has
existed in the wild before it was first detected. Each record includes the submission
timestamp, as well as the cryptographic hash and the download URL of the binary.

A/V telemetry 130 million
machines

Records occurrences of known threats, for which Symantec has created signatures and
which can be detected by anti-virus products. This data set includes intrusion-detection
telemetry. Each record includes the detection timestamp, the signature of the attack, the
OS version of the attack’s target, the name of the compromised process and the file or
URL which originated the attack.

Email spam 2.5 million
decoy accounts

Samples of phishing and spam emails, collected by Symantec’s enterprise-grade sys-
tems for spam filtering. This data set includes samples of email spam and statistics on
the messages blocked by the spam filters.

URL reputation 10 million
domains

Website-reputation data, collected by crawling the web and by analyzing malicious
URLs (a simplified interface for querying this data is available at http://safeweb.
norton.com/). Each record includes the crawl timestamp, the URL, as well as the
name and the type of threat found at that URL. A subset of this data was used to
analyze the rogue A/V campaigns [Cova et al. 2010].

Malware samples 200 countries A collection of both packed and unpacked malware samples (viruses, worms, bots,
etc.), used for creating Symantec’s A/V signatures. A subset of these samples was used
for validating research on automatic malware detection [Griffin et al. 2009].

Table 1. The WINE data sets.

algorithms that operate on the binary-reputation data set. The
data is also amenable to the statistical techniques that have
been proposed in the past for insider attack attribution, such
as naïve Bayes classification, Markov modeling or temporal
sequence matching [Maxion and Townsend 2004].

These macro-benchmarks provide a corpus of field data for
present and future experimenters, allowing them to measure
multiple characteristics of a security tool, such as its latency,
its scalability, and its threat detection accuracy. Because pop-
ular benchmarks can have a lasting impact on the design of
security systems, we will regularly update the WINE data to
ensure that the benchmarks are representative of the threat
landscape in the real world (challenge C3).

3.3 Experimental approach
The WINE data sets described above represent only half of the
security benchmark. To achieve experimental reproducibility,
we are currently building a platform for storing and analyzing
the data. This platform enables data-intensive applications by
adopting a shared-nothing architecture, illustrated in Figure 2.
The data is partitioned across multiple storage nodes, attached
directly to the hosts that execute data analysis tasks. The man-
agement infrastructure of the cluster minimizes the amount of
data that must be transferred through the local area network
by placing, whenever possible, the analysis tasks directly on
the nodes that already store the data required. This is achieved
by maintaining multiple indexes for each data set and by mak-
ing these indexes available on all the nodes of the system. For

example, the binary-reputation data set is indexed on both the
hash of the binary and the download URL, to facilitate the
correlation of data with the A/V telemetry, as well as with the
email spam and URL-reputation data. This design will allow
researchers to run experiments at scale (challenge C4).

The experimental platform allows querying the data sets
using either ANSI SQL or MapReduce tasks [Dean and
Ghemawat 2004], for greater flexibility. WINE receives up-
dates regularly from Symantec’s collection of 240,000 sen-
sors, which are distributed worldwide. Based on the raw data
available in WINE, researchers define reference data sets that
are relevant for their experiments. After the experiments are
completed, the reference data sets are archived in network-
attached storage, for future comparisons against the results
obtained (challenge C2).3

This design is similar to other architectures for data-
intensive computing, such as MapReduce or parallel databases
[Pavlo et al. 2009]. Unlike the prior work, we aim to ensure
the experimental reproducibility, within the context of Syman-
tec’s data collection process. This goal will be achieved, in
part, by providing integrated tools to help researchers manage
and record their activities, either planned or unplanned [Eide
et al. 2007]. These tools will facilitate the development of
scripts that repeat the experimental procedure, e.g. by record-
ing the interactive terminal sessions, and they will provide a

3 The malware data set is stored and analyzed in a red lab, which does not
have inbound/outbound network connectivity in order to prevent viruses and
worms from escaping this isolated environment (challenge C6).

http://safeweb.norton.com/
http://safeweb.norton.com/
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Figure 2. Architecture of the WINE platform. WINE is a
data-intensive system, which focuses on ensuring the repro-
ducibility and comparability of experimental results.

detailed record of the experiment. However, the lab book will
also require a conscious effort from the researcher for docu-
menting the experimental hypothesis and the purpose of each
procedural step (challenge C2). For example, when creating
a taxonomy of the malware samples included in WINE, the
lab book should detail the rationale for the selection of each
classification feature.

Moreover, we will implement mechanisms for assessing
the information quality, which is a measure of how fit the in-
formation is for benchmarking purposes [Keeton et al. 2009].
For example, as MapReduce is known to exhibit a significant
response-time variability [Zaharia et al. 2008], we will esti-
mate the measurement precision by repeating an experiment
multiple times and recording the standard deviation of the re-
sults [Chatfield 1983]. When supplementing the data sets with
information collected on the server-side—e.g., by performing
a reverse DNS query on a IP address that is observed to be
the source of an attack, in order to determine its network loca-
tion before the DNS record is deregistered—we will assess the
data staleness by comparing the collection timestamps. When-
ever possible, we will record the throttling rates of the sub-
missions, and we will also maintain updated aggregate statis-
tics on all the data sets. Such measures of information quality
will allow us to incorporate statistical techniques for handling
the measurement errors4 into our automated tools for classify-

4 For example, the precision of estimation can be improved by combining
results from multiple instruments, which are characterized by different mea-
surement errors, and results that are likely to be imprecise can be discarded
after performing a 3σ test. Such techniques are widely used in engineering
disciplines [Chatfield 1983].

ing, filtering and mining the data and will enable researchers
to draw meaningful conclusions from the experiments (chal-
lenge C5).

Proposed metrics. Several metrics are needed for evaluat-
ing the detection accuracy, scalability and responsiveness of
systems benchmarked. The receiver operating curve (ROC)
plots the true-positive detection rate of an algorithm against
the rate of false-positive warnings. For data sets where the
ground truth is available, a confusion matrix tabulates the at-
tack instances, as classified by the algorithm under evaluation,
against the true classes of those attacks, and it can provide
deeper insights about the strengths and weaknesses of the al-
gorithm. These metrics have been used in the past for compar-
ing the performance of techniques for detecting masqueraders
[Maxion and Townsend 2004].

The ability to create reference data sets of different sizes
and to provision resources in the experimental platform en-
ables a further investigation of the system scalability. The
scaleup measures the system’s ability to maintain a constant
response time when solving increasingly larger problems only
by adding a proportional amount of storage and computational
resources—i.e., if we double the resources, can we solve a
problem twice as large? In contrast, the speedup indicates
whether adding resources results in a corresponding decrease
in the response time—i.e., if we double the resources, can we
solve the same problem twice as fast? Both these metrics were
introduced for evaluating the scalability of parallel database
systems [DeWitt 1993].

Finally, the characteristics of the response-time distribu-
tions are important for systems where the detection of threats
is time sensitive. In these situations, reporting the mean re-
sponse time is not sufficient, as many data-intensive systems
are known to be scalable, but to exhibit heavy-tailed latency
distributions [Zaharia et al. 2008]. The high percentiles of the
latency distributions should also be reported and compared,
such as the 95th and 99th percentiles that are commonly used
in the industry to specify the guarantees provided in service-
level agreements [Google Inc. 2011].

4. Discussion
The WINE data sets and the platform for repeatable experi-
mentation provide the opportunity to ask a number of research
questions. While a complete list of such questions is beyond
the scope of this paper, we provide a few examples to guide
the research agenda for exploring this space.

How to avoid vulnerabilities in computer programs? The
introduction of security vulnerabilities during software evo-
lution was studied by analyzing the revision logs and bug
databases of large, production-quality codebases. For exam-
ple, this approach pointed out how effective the software ven-
dors are in dealing with zero-day attacks [Frei 2009], which
vulnerabilities occur repeatedly as a result of software reuse
[Pham et al. 2010] and the most common programming er-
rors that lead to vulnerabilities [CWE/SANS 2010]. However,



these findings do not discern the security vulnerabilities that
are ultimately exploited and that help malware propagate in
the wild, which emphasizes a fundamental shortcoming in our
assessment of software quality. By correlating data from open-
source software repositories with the information provided by
WINE, we have the opportunity to gain a deeper understand-
ing of security vulnerabilities. This will allow us to minimize
the impact of vulnerabilities by focusing on the programming
bugs that matter.

What are the sources of zero-day attacks? These attacks
exploit vulnerabilities that are not acknowledged publicly,
e.g., while the software vendor is working on patching the
vulnerability. We currently do not know if malware creators
identify vulnerabilities predominantly through a form of fuzz
testing [Miller et al. 1990] or from insider information. We
could gain insight into the sources and prevalence of zero-
day attacks by analyzing the binary-reputation data set and
by correlating this information with events recorded in other
system logs.

Is malware installed predominantly through exploits or
through voluntary downloads? This question could be an-
swered by analyzing the telemetry and the binary-reputation
data sets and has important implications for understanding the
dissemination mechanisms of malware and for validating the
working assumptions of current intrusion-detection systems.

Does the large-scale dissemination of security patches
make the world a safer place? Techniques for exploit-
ing vulnerabilities automatically—by reverse engineering se-
curity patches—have been introduced recently [Brumley et al.
2008], but we lack empirical data about their impact in the
real world. The telemetry data set can highlight, for instance,
if fewer attacks are recorded immediately after the release of
updates and, in general, can shed additional light on this as-
pect of the security arms race.

While these questions originate from a domain that we are fa-
miliar with, we believe that the WINE data is interesting from
other perspectives as well (e.g., for the economical sciences,
storage systems, network performance analysis). By lower-
ing the bar for validating advances in these fields, WINE will
promote controversially innovative research, which introduces
new ideas with the potential to change the community’s per-
spective. For example, investigating the feasibility of patching
unknown software vulnerabilities automatically, at run-time,
currently requires laborious and expensive red-teaming ex-
periments [Perkins et al. 2009]. However, these controversial
questions are the ones most likely to lead to disruptive innova-
tions in our field. WINE will allow such research projects to
establish credibility through rigorous, quantitative validations
using representative field data.

5. Related work
Camp et al. [2009] compile a “data wish list” for cyber-
security research and emphasize the need for representative

field data in the research community. In addition to specific
data that is currently unavailable—such as annotated network
traces, URLs received in spam emails, representative malware
samples—the authors identify the need for a data-sharing pro-
cess that facilitates the collection of metadata and that ad-
dresses the privacy and legal concerns. In this paper, we pro-
pose such a process for the WINE data sets. WINE provides
many of the items on the wish list, and it also includes unique
data sets that were not foreseen by Camp et al. (e.g., histori-
cal information on malicious executables extending before the
threat identification).

Lippmann et al. [2000] describe the Lincoln Labs data set
for benchmarking intrusion detection systems. The data set is
synthesized from the statistical distributions observed in the
network traffic from several Air Force bases. McHugh [2000]
criticizes this work for the lack of information on the vali-
dation of test data—such as measures of similarity with the
traffic traces or a rationale for concluding that similar behav-
iors should be expected when exposing the systems-under-test
to real world data. McHugh observes that the experimenter
has the burden of proof for showing that the artificial envi-
ronment does not affect the outcome of the experiment. Max-
ion and Townsend [2004] emphasize the importance of careful
experimental design for the ability to identify subtle flaws in
the data. These lessons learned endure in the community: the
PREDICT data repository [DHS 2011b] was also criticized
for the lack of adequate metadata, and Camp et al. [2009]
emphasize the need for metadata that allows experimenters to
distinguish meaningful conclusions from artifacts. One of the
major thrusts in our benchmarking effort is to ensure that all
the metadata on experiments and on the data-collection pro-
cess is included in WINE.

We draw inspiration from other research fields, where
benchmarking is well established. For example, Paxson
[2004] catalogs the metadata that must be recorded when
measuring the performance of network protocols. Eide et al.
[2007] report their observations from running Emulab. which
underlies the DETER testbed for experimental cybersecurity
[DHS 2011a], and emphasize the importance of automati-
cally recording experimental processes for the ability to re-
produce the results later. DeWitt [1993] presents the design
of the Wisconsin Benchmark, which produced the seminal
ideas in database benchmarking. In this paper, we identify the
key differences between these approaches and security bench-
marking, such as the need for representative field data and for
frequently updating the reference data sets, and we propose
mechanisms for addressing these challenges.

6. Summary
Through WINE, we aim to develop a benchmark that cov-
ers the entire lifecycle of security threats. WINE includes five
data sets, providing access not only to malware samples, but
also to the contextual information needed to understand how
malware spreads and conceals its presence, how it gains ac-
cess to different systems, what actions it performs once it is in



control and how it is ultimately defeated. The unique features
of these data sets allow us to address several research ques-
tions that are still outstanding, such as the prevalence and ori-
gins of zero-day attacks. Moreover, by correlating these data
sets with information from additional sources, e.g. the revi-
sion logs and bug databases of open source software, we can
follow the entire lifecycle of a security threat from the intro-
duction of a vulnerability in a software component to the dis-
appearance of the last exploit of that vulnerability. We will en-
able the reproducibility of results by archiving the reference
data sets used in experiments, by including the metadata re-
quired for determining what each data set is representative of
and by providing integrated tools for recording the hypotheses
tested and the procedures employed in order to draw meaning-
ful conclusions from experimental results. We believe that this
new benchmarking approach will provide key insights for the
fields of security, machine learning and software engineering.
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