IIIIIIIIII

/‘ Hasp P " Portland State

Towards High-Assurance
Run-Time Systems

Andrew Tolmach
Andrew McCreight
Tim Chevalier

High-Assurance Systems Programming Project
Portland State University

Portland State

The Context

Safety-critical and security-critical software
systems cost too much
— software for certified fielded systems

— software for the tools used to build certified
systems

Current norm: code in low-level languages
Certification by inspection doesn’t scale
We need high assurance by construction

HCSS2011 5

Portland State

« High-level languages like Java or Haskell
prevent many classes of bugs
— Strong static typing prevents pointer forging

— Garbage-collected memory prevents “dangling
pointer” dereferences

— Array bounds checking prevents buffer overflow
bugs and attacks

 Development is faster and easier too
« Performance is adequate for tools (at least)

HCSS2011 3

| - | ‘ Portlanudu |§EtREsl|tTeY

credibility gap

 These safety properties may hold for
source programs, but...

 Languages have big compilers and large,
complex run-time systems
— Glasgow Haskell Compiler RTS: 50k+ lines of C
— Java HotSpot Compiler RTS: 100k+ lines of C++

Post-hoc certification isn’t plausible for all
this infrastructure

HCSS2011

IIIIIIIIII

Iv‘; Hash s | Portland State

Hi Aésurance Run-Time System

« Designed from scratch using principles for
assurance: minimality, simplicity,
modularity, mechanized verification

« Goal: credible implementations using
scalable assurance techniques

« Essential RTS services:
— Garbage collection
— Interfacing to untrusted languages
— Concurrency

HCSS2011 5

Portland State

IIIIIIIIII

Lanuage—based approach

Jse compiler intermediate languages to
nackage RTS services

_anguage formal semantics specify
intended behavior of services and clients

Use semantics-preserving compilation to
guarantee behavior of RTS implementation

Use type systems selectively to help
guarantee that client code is well-behaved

HCSS2011 6

Portland State

UNIVERSITY

CompCert Architecture

C code Essentially I
untyped;
C-like control
structures;
Vv locals, stack,

Cminor code elobakmanens/

Semantics-preserving

transformations
v
X86 ARM Power PC
assembly assembly assembly

HCSS2011 7

IR Portland State

UNIVERSITY

CompCert—basedmRTS strategy

) Enriched
High-level :)
Cminor-like
language > . :
intermediate
source code
code
p—
RTS library
Cminor code |+ code

(Cminor)

Semantics-preserving
transformations

v
assembly
code

HCSS2011 8

High-level

mCrt—based RT

language
source code

New language constructs for:
- Managed heap allocation

- Stacks and synchronization
- Foreign calls

- etc.

HCSS2011

Enriched
Cminor-like
intermediate

code

4

Cminor code

Support code for:
- Garbage collection
- Thread scheduling

- etc.

, ‘ Portlanudu |§EtREsl|tTeY

S strategy

e

RTS library

code

(Cminor)

\

Portland State

UNIVERSITY

Front-end assurance

Enriched
$5% Cminor-like
intermediate

code

P—
RTS library
Cminor code |+ code

(Cminor)

High-level
language >
source code

Semantics-preserving
transformations

v
assembly
code

HCSS2011 10

High-level
language
source code

Typedness-
preserving
transformations

Safe but
restricted
interfaces

HCSS2011

Front-end assurance

Portland State

UNIVERSITY

Strongly-
typed
intermediate
code

Guarantees safety,
not full behavior

Flexible but
unsafe
Enriched interfaces
Cminor-like
intermediate
code
l a)
RTS library
Cminor code |+ code
(Cminor)
Semantics-preserving
transformations
Y
assembly
code

11

JE Y : Portland State

IIIIIIIIII

Garbage Collection

e A mechanism for reclaiming and reusing
unused memory automatically

e Programmer never frees memory by
hand:

e Memory never freed too early, so no
“dangling pointer” bugs

e Unreachable memory always freed, so
no coding-induced space leaks

e Many different algorithms:
e Mark-sweep, Stop-and-copy, etc.

HCSS2011 12

Portland State

Stop- T and -COpy Garbage Collection

The application program (the “"mutator”) allocates
objects from a contiguous memory “heap”

HCSS2011 13

Hasp ' Portland State

IIIIIIIIII

Stopnd-copy Garbag Collection

Allocating an object

HCSS2011 14

Hasp ' Portland State

IIIIIIIIII

Stopnd-copy Garbag Collection

Allocating another object

HCSS2011 15

Hasp ' Portland State

IIIIIIIIII

Stopnd-copy Garbag Collection

Allocating another object

HCSS2011 16

Hasp | Portland State

IIIIIIIIII

Stop-nd-copy Garbag Collection

Eventually, the heap is full of objects!

HCSS2011 17

root

But only some of the
objects (the “live” data)
are reachable from the
mutator’s pointers

(the “roots”)

HCSS2011

root —

18

Portland State

root root — A
B

Everything else is
“garbage” C D

HCSS2011 19

Portland State

Assume that we have a second block of memory
that we can use as a new heap

(Algorithm due to Cheney, 1970)
HCSS2011 20

Portland State

A

I
Copy root A into the new heap

HCSS2011 21

Portland State

A B

T

Scavenge A (copy B into the new heap)

HCSS2011 22

Portland State

A B C D

I
Scavenge B (copy C and D into the new heap)

HCSS2011 23

Portland State

A B C D

T

Scavenge C (no objects copied)

HCSS2011 24

Portland State

A B C D E

T

Scavenge D (copy E into the new heap)

HCSS2011 25

Portland State

A B C D E

T

Scavenge E (B is already in the new heap)

HCSS2011 26

A B C D E

T

« All live data has been copied to the new heap;

o Structure of the original live data graph has been
preserved;

« Unused memory is now contiguous.

HCSS2011 27

Portland State

UNIVERSITY

")'-! .’
il

Garbge Collectoré do have bugs!

« Example: Widely used browsers (IE, Firefox,
Safari), have all suffered from JavaScript engine

GC bugs that can lead to:

* b ro Wse r C ra S h e S Mozilla Firefox Javascript Garbage Collector Vulnerability

18 Apr 2008 ... TITLE: Mozilla Firefox Javascript Garbage Collector Vulnerability

o I I SECUNIA ADVISORY ID: SA29787 VERIFY ADVISORY: ...
d e n Ia I Of Se rV I Ce www.windowsbbs.com » ... » Firefox, Thunderbird & SeaMonkey - Cached
a tta C kS MFSA 2010-25: Re-use of freed object due to scope confusion

1 Apr 2010 ... If garbage collection could be triggered at the right time then Firefox would
later use this freed object. The contest winning exploit only ...

) execu tl O n Of www.mozilla.org/security/announce/2010/mfsa2010-25_html - Cached
Mozilla Foundation Security Advisories

a rb I tra ry COd e MFSA 2009-08 Mozilla Firefox XUL Linked Clones Double Free Vulnerability MFSA

2006-10 JavaScript garbage-collection hazard audit ...
www.mozilla.org/security/announce/ - Cached - Similar

% Show more results from www.mozilla.org

RISK - SANS: @RISK: The Consensus Security Vulnerability Alert

... 08.17.21 - Mozilla Firefox/SealMonkey JavaScript Garbage Collector Memory Corruption
.... This control contains remote code execution vulnerability. ...
www.sans.org/newsletters/risk/display php?v=7&i=17 - Cached - Similar 28

HCSS2011

Portland State

IIIIIIIIII

How can we rule out GC bugs?

e Show correctness of GC algorithm and its
implementation

Our previously
reported work

e Show that mutator and collector are
correctly integrated:

—agree about the set of roots and the
locations of pointers within objects

- respect each others’ private data
structures

HCSS2011 29

Copying Collector Proof

IIIIIIIII

Have a proof for a simple Cheney-style

Y

copying collector implemented in

Collector

~

CompCert’s Cminor language library code

Collector specification is written in U

(Cminor)

separation logic
Proof relies on reusable tactics and

libraries for separation logic reasoning in

Coqg [McCreight TPHOLSQ09]

Comparable to other recent collector
proofs

HCSS2011

30

Portland State

1

A B C D E

e Demonstrating isomorphism @ between old and
new object graphs is the key to proving
correctness of the GC

HCSS2011 31

Portland State

IIIIIIIIII

‘M;

How can we rule out GC bugs?

e Show correctness of GC algorithm and its
implementation

Focus of
remainder of
Lt taIk

e Show that mutator and collector are
correctly integrated:

—agree about the set of roots and the
locations of pointers within objects

- respect each others’ private data
structures

HCSS2011 32

S &P Portland State

GCminor

« Language formalizes
mutator-collector
interface

» Abstracts away details
of GC implementation

HCSS2011

language
source code code
l, ~ ™
Collector

Cminor code | +| library code

(Cminor)

Semantics-preserving
transformations

A 4

assembly
code

33

I 3 Portlangu |§EtREsl|tTeY

« Extends Cminor language with

— alloc primitive to obtain fresh heap objects
« implicitly invokes GC if necessary
« contents of objects must be initialized explicitly

— declarations of GC roots
« specify which variables contain useful heap pointers

* Object layouts are specified separately as
functions
— Size : header — object size
— isPtr : header — offset — bool

HCSS2011 34

GCminor

Portland State

IIIIIIIIII

GCminor semantics

« As for existing CompCert languages,

GCminor is given a small-step operational
semantics

» Each rule describes a valid program step,
its impact on the program state, and any
externally visible effects

o, S t—»g’ statement S

state o = heap + local variables +
stack + ...

trace t = system calls + ...

HCSS2011 35

Portland State

IIIIIIIIII

Values and memory in CompCert

CompCert semantics uses a simple block-
based memory model at all stages in

compiler pipeline

— A block can represent a global data area, a
stack frame, a single memory-allocated

variable, etc.
Values in the program state can

DE

— integers VInt(n)

— pointers VPtr(block,offset)

HCSS2011

36

Portland State

| Spec1fy1ng well-behaved programs

« If no stepping rule applies in a given state,
the program is stuck

— corresponds to an unchecked runtime error
« Example: trying to load memory using a
VInt value as if it were a pointer
— characterizes code that forges pointers
« Well-behaved programs are those that
don’t get stuck

— Semantic preservation theorem only applies to
these; “"Garbage in, garbage out”

HCSS2011 37

Portland State

IIIIIIIIII

GCminor memory semantics

 Each alloc creates a fresh separate block

 Heap blocks appear never to go away and
never to move!

HCSS2011 38

% Portland Statg

Semantics of root declarations

root . not root —
VPtr(P,0) | thrf(oAt,O)_’ A VPtr(Q,0)
] ;
c >
E

 Whenever GC might occur, pointers not
declared as roots appear to be invalidated

HCSS2011 39

Portland State

IIIIIIIIII

Semantics of root declarations

root . f00t ——sl not root —
VPtr(P,0) | VPtr(A,0) A Vint(42)
[.
C D

E

 Whenever GC might occur, pointers not
declared as roots appear to be invalidated

 Any subsequent load attempt will fail

HCSS2011 40

Portland State

Addltlonal Mutator Specifications

« Semantics is parameterized by a nominal

heap size: program gets stuck if live data
size exceeds this heap size

 Program also gets stuck if mutator doesn’t
initialize object properly before next
allocation point

HCSS2011 41

Portland State

Precise but Flexible Specification

« GCminor semantics forms a specification
of how the mutator and GC should interact

— Non-stuck GCminor programs are well-behaved
mutators

— Any correct implementation of GCminor
semantics embodies a well-behaved collector

« Not tied to any particular GC mechanism

— should work for copying, mark-sweep, and
generational collectors

HCSS2011 42

Portland State

IIIIIIIIII

GCminor implementation

Translate GCminor programs to Cminor;
then link in fixed GC library

— Currently use our simple proven Cheney GC
 Heap = single large global array
* alloc primitive becomes library call

« Save and restore live root variables

— at every function call and allocation site
— allows GC to scan and update roots

— "shadow stack” avoids need to change
CompCert backend

HCSS2011 43

« We define a simulation relation

— GCminor state 0 ~ Cminor state p
— Maps abstract heap to concrete heap and root
variables to shadow stack

e Key lemma:
Y 2 O, S t > O

where T.,,= translation of Sy,

HCSS2011 44

Portland State

UNIVER SITY

Simulation mapping Y A Abstract Heap
- extended by alloc

/ D

C A B E D

Concrete Heap

HCSS2011 45

Portland State

Simulation mapplng YV A Abstract Heap
- extended by alloc !
: : Y &
Copying collection /
isomorphism @
C D
C A B E D
W
A B C D E

HCSS2011 Concrete Heap 4

Portland State

Simulation mapping Y A Abstract Heap

- extended by alloc A

74
4 B

Copying collection /

isom(?rphism 0 //, / }
New ¥’ =@ °Y &4 D

s E
B / D
i

e

A B C D E

HCSS2011 Concrete Heap

Portland State

Overall Semantics Preservation

« Theorem: o, F t > O
GCm |
. t -
P, Grmmmmmmmi i P
where G, = final translation of function Fg,

Pf: Iterate Lemma + existing CompCert pfs

« Corollary: If program Pg.,, does not get
stuck, then neither does translated
program Q,.,, and P & Q behave the same

Pf: Iterate Thm + determinacy of Asm

HCSS2011 48

Portland State

IIIIIIIIII

Assessing the Semantics

We get completeness of the GC as well as
soundness...

...but only for programs that obey a
maximum live memory bound

More generally, front ends need to
guarantee that GCminor code doesn’t get

stuck...
... type systems can help

We get guarantees only for observable
behavior of whole programs

HCSS2011 49

Portland State

« Proof-of-concept that exercises GCminor

 Feedback on interface design and
performance for client

» Built on Glasgow Haskell Compiler: real
source language

« Limited set of primitives

— no foreign functions, exceptions, concurrency
— compiles good part of std. benchmark suite

 Modest expectations for performance

HCSS2011 50

Haskell Case Study Archltecture

Typedness-preserving

transformations

HCSS2011

Haskell
source code

Portland State

UNIVERSITY

lGHC

GCminor
code

GHC
Core IR code

l

Cminor code

A 4

Semantics-preserving
transformations

A 4

Typed
Dminor IR
code

Assembly

51

Portland State

IIIIIIIIII

Assurance Argument

Semantics preservation proof for whole
front-end would be huge effort

Much simpler to prove only safety of the
front-end using types

New Dminor IR bridges between typed
and untyped worlds

As an experiment, we kept type system
very minimal, so much of safety argument
relies on run-time checks

HCSS2011 52

Portland State

UNIVERSITY

Current work: Habit front-end

N GCminor
. code
Habit od
source code l
Cminor code
Typedness-preserving . -
transformations Semantics-preserving
transformations
Vv
Fidget code |
Assembly

HCSS2011

Portland State

UNIVERSITY

Current work: Hablt front end

Our new Haskell-

inspired systems GCminor
: rogramming language
Habit P 6 anstiag code
source code l

Cminor code

Typedness-preserving . -
transformations Semantics-preserving
transformations
A4
Fidget code |
Strong type system; no Assembly

heed for runtime null or

HCSS2011 bounds checks

| . G Portland State
Future Challenges

« Extending RTS to support privileged
hardware
— e.g. MMU control for secure inter-language ops
— will require novel intermediate languages

« Incorporating non-determinism
— e.g. pre-emptive multithreading, multicores
— breaks CompCert’s forward simulation approach

 More realistic collectors; more front ends
— need to raise level of Coq proof automation

HCSS2011 55

