Towards Practical
Application-level Support for
Privilege Separation

Nik Sultana Henry Zhu Ke Zhong
lllinois Institute of Technology UIUC University of Pennsylvania
Zhilei Zheng Ruijie Mao Digvijaysinh Chauhan
University of Pennsylvania University of Pennsylvania University of Pennsylvania
Stephen Carrasquillo Junyong Zhao Lei Shi
University of Pennsylvania University of Pennsylvania University of Pennsylvania
Nikos Vasilakis Boon Thau Loo
Brown University & MIT University of Pennsylvania

HotS0S’23

Motivation: Software Security

25000
20000 A
15000 A
w
L
>
QO
++
10000 A
5000 A
0 | L | | | |
QOO ONM O OMN OO O v OO OO M <L ONO IO N
°0°00>0>OGOOOOOOOSOOgOOOOOx—:‘—‘—E FFFFF NN
COOOOOOCOOIOIOI OO0 OO0 OO OO OOOOOOOOOOO
FFFFFFFFFFFF A A A AN A AN AN AN NN NN
Year

Increased trend in # of CVEs:
Good: we know about problems.
Bad: there are more problems. > https://www.cve-search.org/dataset/

https://www.cve-search.org/dataset/

Software Security Techniques

* Range of techniques available: ASLR, Stack canaries,
Sandboxing, Soft/hard bounds checking, ...

* Combining them is good practice.
But some techniques are difficult to apply.

We focus on one such technique: privilege separation.

What is Privilege Separation?
(privsep)

Application Dependencies

What is Privilege Separation?
(privsep)

Application Dependencies

* Compartmentalize code + data. Early application: servers: SMTP, SSH.

* Monolithic application * Concurrent set of cooperating programs.
* Monolithic application: often common privileges throughout.

* Distributed system: granularity of privilege allocation.

5

Why

What-is Privilege Separation?
(privsep)

Vulnerable parser

Application Dependencies Software supply

chain / BoM

* Compartmentalize code + data. Early application: servers: SMTP, SSH.

* Monolithic application * Concurrent set of cooperating programs.

Main benefit: vulnerability containment.

Best case: if a vulnerabillity is exploitable, then fewer
privileges can be abused.

Implementing Privsep

Application Dependencies

* Implementing privsep: usually a lot of work.
Restructuring logic and code, positive and negative tests.

* Changing software without introducing bugs!

* There are many decisions to take (and retake later) wrt what+how to
separate.

mplementing Privsep

Are there buggy parts?

Find+fix bugs vs mitigate Equally trusted?
their exploitability?
Application Dependencies

Too high?

* Implementing privsep: usually a lot of work.
Restructuring logic and code, positive and negative tests.

* Changing software without introducing bugs!

* There are many decisions to take (and retake later) wrt what+how to

ST (See yellow bubbles above)

38

What Privsep looks like

Application (1/2) | Dependencies (1/2)

Some parts are buggy?
Fewer privileges =

fewer problems.

Application (1/2) | Dependencies (1/2)

* Distributed system, heterogeneous privileges.

Sometimes: separating between trusted vs untrusted.

What Privsep looks like

Heuristics:

- Components needing
specific access.

- Dependencies incl. Application (1/2) | Dependencies (1/2)
libraries.

- Cross-domain interfaces

(e.g., parts of network,
filesystem)

Application (1/2) | Dependencies (1/2)

10

Privsep, and then?

Equally trusted?

Application (1/2) | Dependencies (1/2)

Application (1/2) | Dependencies (1/2)

Too high?
Can lower further?

* Drawbacks include:
Inertia wrt splitting software, introduction of new failure modes
(hello distributed systems), performance overhead, inertia wrt
maintainability and portability (e.g., if use hardware enforcement).

11

Roles

2.1. People around Debian

There are several types of people interacting around Debian with different roles:

e upstream author: the person who made the original program.

upstream maintainer: the person who currently maintains the program.

maintainer: the person making the Debian package of the program.

sponsor: a person who helps maintainers to upload packages to the official Debian package archive (after checking their contents).
mentor: a person who helps novice maintainers with packaging etc.

Debian Developer (DD): a member of the Debian project with full upload rights to the official Debian package archive.

Debian Maintainer (DM): a person with limited upload rights to the official Debian package archive.

Please note that you can’t become an official Debian Developer (DD) overnight, because it takes more than technical skill. Please do not be
discouraged by this. If it is useful to others, you can still upload your package either as a maintainer through a sponsor or as a Debian

Maintainer.
- —

https://www.debian.org/doc/manuals/debmake-doc/ch02.en.html#reminders

12

https://www.debian.org/doc/manuals/debmake-doc/ch02.en.html

Roles

Differences between application and tool developers.

Generality,

Accuracy,
completeness

13

(Longstanding) Researc h G Oal

Widely-applicable tool support for privsep

Foundations:

- compartment model
- tool infrastructure

- software-level

14

(Longstanding) Researc h G Oal

Widely-applicable tool support for privsep

v

it

Foundations:

oo - compartment model
+ several examples - tool infrastructure
+ supporting scripts - software-level

& documentation

15

What’s different from prior art?

* Separation “distance” + flexibility.

Separate binaries vs separate processes.
Number of compartments.

Commodity kernels and hardware.

* Both tool and library.
Either can be used directly.
Tool adapts code to use library.

* Model-based approach.

Implemented abstractions provided/explained by the
model.

16

Pitchfork

Annot. :>
Program source + Build scripts BE) | Analyzer

N E._ libcompart Q
0] A
:: é - ?Runtime

Compartmentalized program source

E %% - é Pitchfork (source-level tool)

Program
Transf.

The system has two
components based on a
model:

17

Q0

Pitchfork
E%% - é Pitchfork (source-level tool) .0

Annot. :> Program
Program source + Build scripts BE) | Analyzer Transf.

libcompart [Q

= ?Runtime ”

Compartmentalized program source

The system has two The model supports:
components based on a
model: * Multiple compartments
(different levels of trust)
Pitchfork 0 9 * Synchronous communication

* libcompart e * Monitoring and failure-handling

18

Pitchfork

105 1f(console_type == BEEP_TYPE_CONSOLE) {
16 pitchfork_start("Privileged");
107 1f(ioctl(console_fd, KIOCSOUND, period) < 0) {

108 putchar('\a'); /* Output the only beep we can, in an
effort to fall back on usefulness */

109 perror("ioctl");

110 }

111 pitchfork_end("Privileged");

12} else {

113 /* BEEP_TYPE_EVDEV =%/

114 struct input_event e;

115 e.type = EV_SND;

116 e.code = SND_TONE;

117 e.value = freq;

118 pitchfork_start("Privileged");

119 if(write(console_fd, &e, sizeof(struct input_event)) <

0) {
120 putchar('\a'); /* See above */
121 perror("write");
122 }
123 pitchfork_end("Privileged");
124}

19

Compartment Model

initkey() |

pesyesar TR

enczypt) | . icmdparsel! bt B

o —
S P R P |

20

Example of what’s enabled

T P == R ey
(binary 1/2) : : <:| :> | T | : : (binary 2/2)

Ubuntu 1604 L' Ne’[WOI‘k Firewa” |-| Debian 8
Machine 1 Switch Machine 2

* Machine and network-level policy+enforcement.
* Communication channel over TCP.

* Organization:
Domain: one on each machine
Compartments: one in each domain.
Segments: 2 in Classified, 1 in Main.

21

Evaluation

(Many more details in the paper)

* Applicability

* Examples

* Maintainabillity

* Convenience
* Security

* Known CVEs

* Heuristics

* QOverhead: running time, memory, binary size.

22

Evaluation

* Applicability Software Plat. Separation Goal
cURL L Command invocation, parsing, file transfer.
* Examples Evince L libspectre dependency—see §2.

git L. Historical vulnerability [13].
ioquake3 m Applying server updates.
tifftopnm L Separating parsers—see §C.
nginx L HTTP request parsing

redis L Isolating low-use commands.
tcpdump } E

uniq

Vitetris L. Network-facing code—see §2.

* Maintainability

* Convenience

* Security Leveraging Capsicum [68].

* Known CVEs
* Heuristics

* QOverhead: running time, memory, binary size.

23

Evaluation

* Applicability AR #L.OC Synthesized

#Lines of Annotation

* Examples

* Maintainability

#LOC Synthesized
Compart. De/marsh.

beep 372 133 245 42

PuTTY 123K 52 29 13.5
wget® 62.6K 65 168 77.7
wget! 62.8K 57 38 11.9

Soft. #LOC #Annot. SAR

* Convenience

* Security

* Known CVEs

* Heuristics

* QOverhead: running time, memory, binary size.

24

Evaluation

* Applicability
* Examples

* Maintainability

. Software CVE-#-x Vulnerability
* Convenience —
beep 2018-0492 Race condition
e g , PuTTY 2016-2563 Stack buffer overflow
ecurity wget 2016-4971 Arbitrary file writing

wget 2017-13089 Stack buffer overflow

* Known CVEs
* Heuristics

* QOverhead: running time, memory, binary size.

25

it System release

* http://pitchfork.cs.iit.edu

* Everything is released except for exploit code:
* libcompart
* Pitchfork
* examples of applying libcompart & Pitchfork
* FreeBSD ports analysis

* Apache 2.0 license

20

http://pitchfork.cs.iit.edu

Follow-up work

A Domain-Specific Language for Reconfigurable,
Distributed Software Architecture

Henry Zhu Junyong Zhao Nik Sultana
Department of Computer Science Department of Computer Science Department of Computer Science
University of lllinois Urbana-Champaign University of Arizona Hlinois Institute of Technology

Urbana, IL, USA Tucson, AZ, USA Chicago, IL, USA

Abstract—A program’s architecture—how it organizes the
invocation of application-specific logic—influences important
program characteristics including its scalability and security.
Architecture details are usually expressed in the same program-
ming language as the rest of a program, and can be difficult
to distinguish from non-architecture code. And once defined,
architecture is difficult and risky to change because it couples
tightly with application logic over time.

We introduce C-Saw: an approach to express a soft-
ware’s architecture using a new embedded domain-specific lan-
guage (EDSL) designed for that purpose. It decouples application-
specific logic from architecture, making it easier to identify
architectural details of software. C-Saw leverages three ideas:
(i) introducing a new, formally-specified EDSL to separate
an application’s architecture description from its programming
language; (ii) reducing architecture implementation to the def-
inition and management of distributed key-value tables, and
(iii) introducing an expressive state-management abstraction for
distributed applications.

We describe a prototype implementation of C-Saw for C pro-
grams and use it to build end-to-end examples of expressing and
changing the architecture of widely-used, third-party software.
We evaluate this on Redis, cURL, and Suricata and find that
C-Saw provides expressiveness and reusability, requires fewer
lines of code when compared to directly using C to express
architectural patterns, and imposes low performance overhead
on typical workloads.

Index Terms—Key-Value Tables, Process Algebra, Coordina-
tion Language, Domain-Specific Language

I. INTRODUCTION

Software’s architecture describes its fundamental
information-processing structure [1] and varies in ils
complexity. Examples of architecture include: a sequence
of processing steps, a pipeline of concurrent stages, an
event-handling system, a fan-out to worker instances, and a
mix of these patterns [2].

The choice of architecture influences important software
characteristics such as security [3] and performance [4]. For
example, architecture affects how software can scale 1o meet

dAamand hu harmeaceine ardditinnal recanerae tn dicteibhnta tha

The blurring of architecture and logic complicates the imple-
mentation of important features that depend on architecture-
level changes. Fig. 1 shows examples of such features which
include caching and load-balancing.

As a result of architecture’s poor visibility in source code
and its coupling with non-architecture code, architecture-level
changes are high-friction: they take effort, risk introducing
bugs, and create a maintenance burden if the software diverges
from an up-stream, canonical open-source version. One could
avoid architecture-level change by designing an overly-general
architecture to begin with, but this raises practitioners’ red
flags because it risks “premature opltimization™ [6], “creeping
elegance” [7], and introducing a “bad smell” from needless
complexity due to “speculative generality” [8]. Even then,
general interfaces might not forestall the need for eventual
revision since the software’s requirements can evolve.

To avoid these problems, we need a low-friction method
Lo express software’s architecture. It needs to support a range
of architecture patterns, be linguistically distinguished from
application logic, and induce low overhead. New and existing
software could then be adapted more easily to respond to new
and changing needs that require architecture-level changes.

In this paper, we introduce C-Saw (“see-saw™): an approach
o express a software’s architecture using a new Embedded
domain-specific language (DSL) designed for that purpose.
C-Saw relies on distributed key-value tables to track both
architecture-related state and application-logic state. These
tables are managed by DSL expressions. The DSL is inlined
into the application source-code and it is designed to work with
existing software and languages—we prototyped this for the
C language and developed usage examples involving widely-
used, third-party applications.

The DSL can express a set of architectures that serve
commonly-occurring needs such as those serviced by the
examples in Fig. 1. These needs include: (i) availability
through fail-over or replication; (ii) manageability through live

madmeatenm e anala At FR) ool rcesvssca thannalh Aan hisney FTas

InstanceTypes = {Tf, Tg}

Instances = {f - Tfy, G- ”'g}
def main() <« start f(g) + start g(f)

def 7;:: junction(g) <«
init prop ~Work
init data n
H,|; save(..., n);
write(n, g);
assert [g] Work;
wait [| “Work;
def 7, :: junction(f) <
init prop ~Work
init data n
guard Work
restore(n, ...);
|H;
retract [f| Work;

Ack: Henry Zhu, Junyong Zhao

27

* Computer Science ;
. Department |

Nik Sultana

| http://www.cs.iit.edu/~nsultanai

http://www.cs.iit.edu/~nsultana1
http://www.cs.iit.edu/~nsultana1

Extra slides

Related work

Provide

: Provide code Replace Hardware
programming transformer compiler support
Interface
(+ prog.
OS User- interface)

space

30

Related work

Provide ;
) Provide code
programming
) transformer
interface

User-
space

Focus: preserve portability,
lessen splitting/rewriting effort.

31

Related work

Provide ;
) Provide code
programming
) transformer
interface

o

User-
space

Best of both worlds: flexibility
and convenience (automation).

Can inspect generated code.
32

Related work

Prm:::in Provide code
pr9gra g transformer
interface

User-
space

33

)‘“I'echnical contribution

ArArtifact contribution
Related work
Provide. Provide code
programming

interface transformer

User-
space

Security evaluation
involving CVEs

Security evaluation
involving CVEs

34

Pitchfork

(1) Source code (3) Annotation analysis

|,)

’@Annotated source code

&)

(5) Runtime AP

CN

(4)Transfor med source co e (7) Debugging

Compartment Model

* Organization:
Domain: Shared memory/handles/resources across compartments
Compartments: Sharing across segments.
Segments: code + data.

36

Compartment Model

Domain: Shared memory/handles/resources across compartments
Compartments: Sharing across segments.
Segments: code + data.

37

Compartment Model

Domain: Shared memory/handles/resources across compartments
Compartments: Sharing across segments.
Segments: c&le + data.

=

38

Compartment Model

Organization:

Domain: Shared memory/handles/resources across compartments
Compartments: Sharing across segments.
Segments: code + data.

Special compartments: Main, Monitor — always in domain0.
Implementation: pluggable API for communication, configuration and enforcement.
Generalization and Tooling

vs Flexibility:
General but restrictive

39

lIbocompart

1 +#include "netpbm_interface.h"

2 1int

3 main(int argc, const char * argv[]) {

s +compart_init(NO_COMPARTS, comparts, default_config);

5 +convertTIFF_ext = compart_register_fn("libtiff", &
ext_convertTIFF);

6 +parseCommandLine_ext = compart_register_fn("cmdparse"
. &ext_parseCommandLine);

7 +compart_start("netpbm");

9 struct CmdlineInfo cmdline;
10 TIFF x tiffP;

n FILE = alphaFile;

12 FILE * imageoutFile;

13

40

14

17

18

19

20

22

23

24

25

26

27

28

lIbocompart

pm_proginit(&argc, argv);

-parseCommandLine(argc, argv, &cmdline);

+struct extension_data arg;
+args_to_data_CommandLine(&arg, argc, argv);

+arg = compart_call_fn(parseCommandLine_ext, arg);
+args_from_data(&arg, &cmdline);

-tiffP = newTiffImageObject(cmdline.inputFilename);
-1f (cmdline.alphaStdout)

-TIFFClose(tiffP);

+args_to_data(&arg, &cmdline);
+arg = compart_call_fn(convertTIFF_ext, arg);
pm_strfree(cmdline.inputFilename) ;

41

