
Towards Practical
Application-level Support for

Privilege Separation

HotSoS’23

Nik Sultana
Illinois Institute of Technology

Henry Zhu
UIUC University of Pennsylvania

Ke Zhong

Zhilei Zheng Ruijie Mao Digvijaysinh Chauhan

Stephen Carrasquillo Junyong Zhao Lei Shi

Nikos Vasilakis Boon Thau Loo
Brown University & MIT

University of Pennsylvania University of Pennsylvania University of Pennsylvania

University of Pennsylvania University of Pennsylvania University of Pennsylvania

University of Pennsylvania

(from ACSAC’22)

Motivation: Software Security

Increased trend in # of CVEs:
Good: we know about problems.
Bad: there are more problems. 2

Ack: Graph generated using dataset
from https://www.cve-search.org/dataset/

2

(as of 4th D
ec 2022)

https://www.cve-search.org/dataset/

Software Security Techniques

• Range of techniques available: ASLR, Stack canaries,
Sandboxing, Soft/hard bounds checking, …

• Combining them is good practice.
But some techniques are difficult to apply.

We focus on one such technique: privilege separation.

3

What is Privilege Separation?
(privsep)

• Compartmentalize code + data. Early application: SSH server.

• Monolithic application Concurrent set of cooperating programs.

• Monolithic application: often common privileges throughout.

• Distributed system: granularity of privilege allocation.

Application Dependencies

Privileges

4

What is Privilege Separation?
(privsep)

• Compartmentalize code + data. Early application: servers: SMTP, SSH.

• Monolithic application Concurrent set of cooperating programs.

• Monolithic application: often common privileges throughout.

• Distributed system: granularity of privilege allocation.

Application Dependencies

Privileges

5

Heuristics for
splitting software.

What is Privilege Separation?
(privsep)

• Compartmentalize code + data. Early application: servers: SMTP, SSH.

• Monolithic application Concurrent set of cooperating programs.

• Monolithic application: often common privileges throughout.

• Distributed system: granularity of privilege allocation.

Application Dependencies

Privileges

6

Vulnerable parser

Software supply
chain / BoM

Why

^

Main benefit: vulnerability containment.
Best case: if a vulnerability is exploitable, then fewer
privileges can be abused.

Implementing Privsep

• Implementing privsep: usually a lot of work.
Restructuring logic and code, positive and negative tests.

• Changing software without introducing bugs!

• There are many decisions to take (and retake later) wrt what+how to
separate.

Application Dependencies

Privileges

7

Implementing Privsep

• Implementing privsep: usually a lot of work.
Restructuring logic and code, positive and negative tests.

• Changing software without introducing bugs!

• There are many decisions to take (and retake later) wrt what+how to
separate.

Application Dependencies

Privileges

Too high?

Are there buggy parts?

Find+fix bugs vs mitigate
their exploitability?

Equally trusted?

8

(See yellow bubbles above)

What Privsep looks like

• Distributed system, heterogeneous privileges.

Sometimes: separating between trusted vs untrusted.

9

Application (1/2)

Fewer Privileges

Application (1/2) Dependencies (1/2)

More Privileges

Dependencies (1/2)

[Some parts are buggy?
Fewer privileges =
fewer problems.

What Privsep looks like

Application (1/2)

Fewer Privileges

Application (1/2) Dependencies (1/2)

More Privileges

Dependencies (1/2)

[

10

Heuristics:
- Components needing

specific access.
- Dependencies incl.

libraries.
- Cross-domain interfaces

(e.g., parts of network,
filesystem)

Application (1/2)

Fewer Privileges

Application (1/2) Dependencies (1/2)

More Privileges

Dependencies (1/2)

[
Privsep, and then?

• Drawbacks include:
Inertia wrt splitting software, introduction of new failure modes
(hello distributed systems), performance overhead, inertia wrt
maintainability and portability (e.g., if use hardware enforcement).

Too high?
Can lower further?
Need further splits?

Equally trusted?
Need further splits?

11

Roles

12

https://www.debian.org/doc/manuals/debmake-doc/ch02.en.html#reminders

https://www.debian.org/doc/manuals/debmake-doc/ch02.en.html

Differences between application and tool developers.

13

Training Generality,
Accuracy,
completeness

Roles

Research Goal

Widely-applicable tool support for privsep

14

Foundations:
- compartment model
- tool infrastructure
- software-level

(Longstanding)

(This paper)

Research Goal

Widely-applicable tool support for privsep

15

Foundations:
- compartment model
- tool infrastructure
- software-level

(Longstanding)

Artefacts:
+ tooling
+ several examples
+ supporting scripts

& documentation

(This paper)

What’s different from prior art?
• Separation “distance” + flexibility.

Separate binaries vs separate processes.
Number of compartments.
Commodity kernels and hardware.

• Both tool and library.
Either can be used directly.
Tool adapts code to use library.

• Model-based approach.
Implemented abstractions provided/explained by the
model.

16

The system has two
components based on a
model:

• Pitchfork

• libcompart

Pitchfork

17

1 2

3

The system has two
components based on a
model:

• Pitchfork

• libcompart

Pitchfork

18

The model supports:

• Multiple compartments
(different levels of trust)

• Synchronous communication

• Monitoring and failure-handling

1 2

3

19

Pitchfork

20

Compartment Model

21

Example of what’s enabled

• Machine and network-level policy+enforcement.

• Communication channel over TCP.

• Organization:
Domain: one on each machine
Compartments: one in each domain.
Segments: 2 in Classified, 1 in Main.

Evaluation
• Applicability

• Examples

• Maintainability

• Convenience

• Security

• Known CVEs

• Heuristics

• Overhead: running time, memory, binary size.

22

(Many more details in the paper)

Evaluation
• Applicability

• Examples

• Maintainability

• Convenience

• Security

• Known CVEs

• Heuristics

• Overhead: running time, memory, binary size.

23

Evaluation
• Applicability

• Examples

• Maintainability

• Convenience

• Security

• Known CVEs

• Heuristics

• Overhead: running time, memory, binary size.

24

Evaluation
• Applicability

• Examples

• Maintainability

• Convenience

• Security

• Known CVEs

• Heuristics

• Overhead: running time, memory, binary size.

25

System release
• http://pitchfork.cs.iit.edu

• Everything is released except for exploit code:

• libcompart

• Pitchfork

• examples of applying libcompart & Pitchfork

• FreeBSD ports analysis

• Apache 2.0 license

26

http://pitchfork.cs.iit.edu

Follow-up work

27

Ack: Henry Zhu, Junyong Zhao

ILLINOIS TECH

http://www.cs.iit.edu/~nsultana1
Nik Sultana

Computer Science
Department

http://www.cs.iit.edu/~nsultana1
http://www.cs.iit.edu/~nsultana1

Extra slides

Related work

30

Provide code
transformer

Replace
compiler

Hardware
support

OS User-
space

Provide
programming

interface
(+ prog.

interface)

Related work

31

Provide
programming

interface
Provide code
transformer

Replace
compiler

Hardware
support

OS User-
space

Focus: preserve portability,
lessen splitting/rewriting effort.

(+ prog.
interface)

Related work

32

Provide
programming

interface
Provide code
transformer

Replace
compiler

Hardware
support

OS User-
space

Best of both worlds: flexibility
and convenience (automation).
Can inspect generated code.

(+ prog.
interface)

Analyze + transform
code based on
annotations.

33

34

35

Pitchfork

36

Compartment Model

• Organization:
Domain: Shared memory/handles/resources across compartments
Compartments: Sharing across segments.
Segments: code + data.

• Special compartments: Main, Monitor — always in domain0.

• Implementation: pluggable API for communication, configuration and enforcement.

• Generalization and Tooling
vs Flexibility:
General but restrictive

37

Compartment Model

• Organization:
Domain: Shared memory/handles/resources across compartments
Compartments: Sharing across segments.
Segments: code + data.

• Special compartments: Main, Monitor — always in domain0.

• Implementation: pluggable API for communication, configuration and enforcement.

• Generalization and Tooling
vs Flexibility:
General but restrictive

∈

38

Compartment Model

• Organization:
Domain: Shared memory/handles/resources across compartments
Compartments: Sharing across segments.
Segments: code + data.

• Special compartments: Main, Monitor — always in domain0.

• Implementation: pluggable API for communication, configuration and enforcement.

• Generalization and Tooling
vs Flexibility:
General but restrictive

∈

∈

39

Compartment Model

• Organization:
Domain: Shared memory/handles/resources across compartments
Compartments: Sharing across segments.
Segments: code + data.

• Special compartments: Main, Monitor — always in domain0.

• Implementation: pluggable API for communication, configuration and enforcement.

• Generalization and Tooling
vs Flexibility:
General but restrictive

40

libcompart

41

libcompart

