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Abstract—With the rapid development of sophisticated attack

techniques, individual security systems that base all of their

decisions and actions of attack prevention and response on their

own observations and knowledge become incompetent. To cope

with this problem, collaborative security in which a set of security

entities are coordinated to perform specific security actions is

proposed in literature. In collaborative security schemes, multiple

entities collaborate with each other by sharing threat evidence

or analytics to make more effective decisions. Nevertheless,

the anticipated information exchange raises privacy concerns,

especially for those privacy-sensitive entities. In order to obtain a

quantitative understanding of the fundamental tradeoff between

the effectiveness of collaboration and the entities’ privacy, a

repeated two-layer single-leader multi-follower game is proposed

in this work. Based on our game-theoretic analysis, the expected

behaviors of both the attacker and the security entities are

derived and the utility-privacy tradeoff curve is obtained. In

addition, the existence of Nash equilibrium (NE) for the collab-

orative entities is proven, and an asynchronous dynamic update

algorithm is proposed to compute the optimal collaboration

strategies of the entities. Furthermore, the existence of Byzantine

entities is considered and its influence is investigated. Finally,

simulation results are presented to validate the analysis.

I. INTRODUCTION

Individual security systems mainly rely on their own (often

limited) observations and knowledge to make security deci-

sions and take actions to prevent and respond to attacks. With

the development of sophisticated large-scale attack techniques,

it becomes more and more difficult for individual security

systems to provide effective security service. To mitigate this

problem, collaborative security is developed [1].

Collaborative security has been widely applied and proven

to be an effective approach in many security domains including

intrusion detection, anti-spam, anti-malware, insider attacker

identification and botnet detection (see, e.g., [2, 3] and the

references therein). The objective of collaborative security is

to enhance security performance through strategically sharing

security-related information with each other. Considering that

the entities in collaborative security are often independent

and hence may take self-interested actions, game theory has

been widely employed to devise the collaboration strategies
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in various collaborative security applications [4–9]. In these

works, the entities devote some efforts to exploring the vulner-

abilities in a common “platform” and share the security-related

information for a better defense. However, the game-theoretic

analysis and the corresponding strategy design in these works

only concern the interactions among the collaborative entities.

In practice, the behaviors of the attackers usually greatly

affect the strategies of the entities. For example, when attacks

are launched on certain entities, they will have a stronger

desire to increase security investment and gather information

from the collaborators. In addition, the privacy issue that an

entity’s private information may be leaked in the information

sharing process has been largely ignored. In practice, if not

properly addressed, such privacy concern may deter entities

from collaborating.

Some techniques have been proposed in literature to protect

the privacy [10–18], at the cost of utility loss (i.e., a degra-

dation in collaboration effectiveness). However, there are two

major limitations in these pioneering works. Firstly, it is often

difficult to quantify the amount of preserved privacy and utility

loss in the existing methods. Secondly, the existing methods do

not have the flexibility of properly adjusting the collaboration

strategies in response to a given privacy requirement.

In this work, a new privacy-aware collaboration scheme

is proposed for collaborative security, which is amenable to

the quantitative utility-privacy tradeoff analysis and flexible in

meeting the pre-specified privacy requirement. Considering the

self-interestedness of the security entities and the intelligence

of the attacker, a game-theoretic approach is taken in this work.

More specifically, the interaction between the attacker and the

group of collaborative security entities is modeled as a two-

layer game. The first-layer focuses on the interaction between

the attacker and the entities. Particularly, the influence of the

privacy requirement on the entities’ responding strategies and

the overall detection performance is explored, based on which

the corresponding utility-privacy tradeoff curve is obtained.

The second-layer focuses on the interactions among security

entities themselves, based on which the optimal collaboration

strategies of the entities in different scenarios are derived.

In addition, the existence of Byzantine entities is further

considered and its influence is investigated.

The remainder of this paper is organized as follows. Sec-

tion II formulates the utility-privacy tradeoff problem. The978-1-5386-1027-5/17/$31.00 c©2017 IEEE



proposed two-layer game model is presented in Section III.

The proposed game is solved in Section IV. The impact of

Byzantine entities and corresponding solutions are discussed

in Section V. The theoretical analysis is validated through

simulations in Section VI. Related works are discussed in

Section VII. Conclusions and future works are presented in

Section VIII.

II. PROBLEM FORMULATION

In this work, a network that consists of N different self-

interested security entities is considered, denoted by N =
{1, 2, ..., N}. Let st denote the state of the network at time t.

A. Attacker Model

An external attacker that can infer the possible responding

strategies and collaboration strategies of the security entities

and choose its optimal attacking strategy accordingly is con-

sidered. It is assumed that the attacker is able to manipulate

the state of the network by launching attacks and its goal is

to maintain the attack on the network as long as possible. In

each time slot, it is assumed that the attacker will receive an

instant reward if it launches an attack successfully without

being identified. The follow-up actions are beyond the scope

of this paper.

Furthermore, for the ease of presentation, the following

discussion will be focused on one type of attack (e.g., DDoS)

on the network.1 As a result, the network has two possible

states, i.e., st ∈ {0, 1} in which st = 1 (st = 0) stands for

abnormal (normal) state corresponding to the case that the

attacker launches (does not launch) an attack.

The action space of the attacker against the network is

A = {a1, a2}, where a1 corresponds to “attack” and a2
corresponds to “no attack”. The mixed strategy chosen by the

attacker at time t is denoted by pA
t = [pAt (a1), p

A
t (a2)], in

which pAt (a1) and pAt (a2) are the probabilities that the attacker

takes action a1 and a2 at time t, respectively. The game

between the attacker and defender is repeated until the attack is

identified and addressed successfully by the security entities. If

the attack is identified and addressed successfully, the attacker

will stop using the same type of attack (in the time frame of

interest). This assumption makes sense because an attacker

usually launches an attack by exploiting the vulnerabilities of

the system and once the attack is detected, the vulnerabilities

will be fixed and relevant signatures be recorded, which makes

the same attack ineffective. If the attacker switches to a new

type of attack, it is equivalent to starting a new game in our

model, which is hence not considered here for simplicity.

B. Defender Model

At time t, each entity j in the network will independently

obtain a private observation (denoted by Yj,t) about the net-

work state st. Each entity j knows the structure of its private

1When the attacker launches multiple types of attacks independently,
multiple independent games can be formed, each corresponding to a different
type of attack. For the case that the attacker combines the efforts of multiple
attacks to improve the successful rate, it can be considered as one type of
attack.

observation, which is represented by a set of parameterized

marginal distributions Qj = {qj(Yj,t|st)|Yj,t ∈ {0, 1}}, where

qj(·|st) is the distribution of the private observation given the

true network state st.
Since the private observations may not be sufficient for

the entities to learn the true network state st individually,

this work considers the scenario in which the entities in the

network can collaborate and share their observations so as

to further enhance the network security. However, considering

that the observations are private, such observation sharing will

lead to potential privacy leakage for the entities. In order to

preserve privacy, each entity j shares an obfuscated version of

Yj,t with others, denoted by Ŷj,t. In this work, it is assumed

that each entity j will misreport its true observation result

with probability pcj,t , which is assumed publicly known. The

preserved privacy is measured by the entropy induced by pcj,t
[19], given as follows:

H(pcj,t) = −pcj,t log2(p
c
j,t)− (1− pcj,t) log2(1− pcj,t). (1)

In addition, it is further assumed that all the collaborative

entities will elect a trustworthy master entity that acts as the

defender of the network, which may be rotated from time

to time. The defender will collect the shared observations,

and suggest a recommended action for all entities to follow.

To this end, the objective of the defender is to respond to

the attacks properly on behalf of all the entities when the

network is under attack. Its action space is D = {d1, d2},

where d1 corresponds to “respond” and d2 corresponds to

“do nothing”. The mixed strategy chosen by the defender is

denoted by pD
t = [pDt (d1), p

D
t (d2)], in which pDt (d1) and

pDt (d2) are the probabilities that it takes action d1 and d2 at

time t, respectively. Note that since all entities will follow the

recommended action of the defender, the action and payoff of

the defender are used to represent those of the whole network

in the following discussion.

C. Payoff Settings

Let W denote the loss of security when an attack is suc-

cessfully launched. In this case, it is assumed without loss of

generality that the attacker gets a payoff W and the defender

gets a payoff −W .2 In contrast, if the attack is detected

and successfully addressed, the payoffs for the attacker and

the defender are assumed to be −W and W , respectively.

Table I illustrates the payoff matrix of the attacker/defender

interaction, in which the first entry and second entry in each

cell denote the payoffs of the attacker and the defender,

respectively. In the matrix, b ∈ [0, 1] denotes the possibility

of successful response to the attack, which depends on the

responding capability of the entities and is independent of their

observation capability (i.e., Qj). Similar to [20], the cost of

attacking and responding are assumed to be proportional to W ,

denoted by CaW and CrW , respectively, in which Ca and

Cr denote the corresponding cost coefficients. The first cell

2The model can be readily generalized into the case that the sum of payoffs
of the attacker and the entities are not equal to 0.



corresponds to the case when the attacker chooses to attack

and the defender chooses to respond at the same time. Since

the probability of successful response for the network is b, the

defender will get payoff W − CrW and −W − CrW with

probability b and 1 − b, respectively. Therefore, the expected

payoff of the defender is −(1−2b)W−CrW , while that of the

attacker is (1−2b)W−CaW . The payoffs of both the attacker

and the defender in other cases can be obtained similarly. Note

that when the defender chooses to “do nothing”, the payoff of

the attacker choosing “attack” should be higher than that of

choosing “no attack” (otherwise, the attacker has no incentive

to attack), which indicates Ca < 1. Similarly, Cr < 1.

D. A Concrete Example

To help understand the models mentioned in the previous

subsections, an example is provided as follows.

Example. In this example, at each time slot t, the attacker can

choose to launch a DDoS attack on the whole network. When it

launches the attack, the network state becomes abnormal (i.e.,

st = 1). As a result, the network resource becomes unavailable

to the entities in the network and the corresponding services

are disrupted. Therefore, the entities in the network will suffer

a loss of W , which is determined by the specific services or

amount of resource being compromised. Intuitively, to produce

more detrimental effects, the attacker has to spend more effort.

Therefore, the cost is set to be proportional to W and denoted

by CaW .

The entities in the network will deploy their own IDSs to

monitor the network traffic as a first line of defense. When an

attack is launched, the network state becomes abnormal (i.e.,

st = 1), and the IDSs output the detection results {Yj,t}
N
j=1.

In this case, the parameterized marginal distributions depend

on the detecting capability of the IDSs. More specifically,

qj(Yj,t = 1|st = 1) and qj(Yj,t = 0|st = 1) correspond to the

detection rate and false negative rate of IDS j, respectively,

while qj(Yj,t = 1|st = 0) represents the false positive rate.

Due to possible false alarms and missed detections, the

detection results of an individual entity may not be sufficient

to decide whether there is a DDoS attack in the network

or not. To make more effective decisions, the entities in the

network will elect a trustworthy entity to act as the defender

and share their detection results with him. However, sharing

the detection results may lead to potential privacy leakage for

the entities.3 As a result, the entities will share an obfuscated

version of the detection results. Based on the shared detection

results, the defender can evaluate the possibility of DDoS

attack and decide whether to invest some effort to identify and

track the attacker, at a cost of CrW . If the defender identifies

the attacker successfully, the network will recover from the

3For example, if entity j detects the attack on the network successfully,
it indicates that entity j is aware of the DDoS attack in the network. By
eavesdropping the shared information, the attacker can infer the security state
of the corresponding entity and therefore design better attacking strategies
targeting this specific entity. As another example, an intrusion alert usually
contains some private information, such as IP address and processing time,
the improper use of which may raise severe privacy concerns for the entities.

TABLE I
PAYOFF MATRIX OF THE GAME

Respond Do nothing

Attack
(1 − 2b)W − CaW ,
−(1− 2b)W − CrW

W − CaW , −W

No attack 0, −CrW 0, 0

,

,

,

?Attacker

0

1

0

1

0

1

0

1
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0

1, ,

Fig. 1. Diagram of the game model.

damage caused by the attack and the defender will receive a

reward W . Successful identification of the attacker can also

help prevent the attacks from the same attacker in the future.

III. COLLABORATIVE SECURITY GAME MODEL

In this section, the problem is modeled as a repeated two-

layer single-leader multi-follower game, in which the attacker

acts as the leader and entities act as the followers which are

informed of the attacker’s attacking strategy. The first-layer

game models the interaction between the attacker and the

defender, while the second-layer game models the collabo-

rative information sharing among the entities themselves. Fig.

1 depicts a special case of the game model in which there are

only three collaborative entities. More specifically, the problem

is solved in two steps: first of all, the first-layer game between

the attacker and the defender is solved, which determines

the optimal payoffs of both the attacker and the defender as

functions of the collaboration strategies of the entities. Then,

based on the payoff functions from the first-layer game, the

entities further determine their optimal collaboration strategies

given their privacy requirements in the second-layer game.

A. The First-layer Leader-follower Game

In the first-layer game, since it is not possible for the entities

to foresee the strategies of the attacker and the future observa-

tions of themselves, the best response to the attacker’s strategy

at each time t is actually the best strategy that an entity can

take.
1) The Followers’ Problem: Without loss of generality,

assume that entity i is elected as the defender. At time t,
let Ŷ−i,t denote the set of obfuscated observations shared by

other entities. Given the attacker’s strategy pA
t and its own

observation Yi,t, the defender first estimates the probability

that the attacker actually launches an attack, which is given

by

F i(a1|Yi,t, Ŷ−i,t) =
pAt (a1)p(Yi,t, Ŷ−i,t|a1)

p(Yi,t, Ŷ−i,t)
, (2)



where p(Yi,t, Ŷ−i,t|a1) is the probability that the observation

of the defender is Yi,t while the shared obfuscated observations

are Ŷ−i,t at time t given that the attacker launches an attack;

p(Yi,t, Ŷ−i,t) is the probability that the observation of the

defender is Yi,t while the shared obfuscated observations are

Ŷ−i,t at time t. They are given by

p(Yi,t, Ŷ−i,t|a1) = qi(Yi,t|st = 1)
∏

j 6=i

p(Ŷj,t|st = 1), (3)

p(Ŷj,t = 1|st = 1) = (4)

qj(Yj,t = 1|st = 1)(1− pcj,t) + qj(Yj,t = 0|st = 1)pcj,t,

p(Ŷj,t = 0|st = 1) = (5)

qj(Yj,t = 0|st = 1)(1− pcj,t) + qj(Yj,t = 1|st = 1)pcj,t,

p(Yi,t, Ŷ−i,t) = (6)

pAt (a1)p(Yi,t, Ŷ−i,t|a1) + pAt (a2)p(Yi,t, Ŷ−i,t|a2),

in which qi(Yi,t|st = 1) is the probability that the defender

observes Yi,t when st = 1 and p(Ŷj,t|st = 1) is the probability

that entity j shares Ŷj,t with the defender when st = 1.

Then, the defender finds its optimal strategy by solving the

following optimization problem:

pD
t (pA

t , Yi,t, Ŷ−i,t) = argmax
pD
t

UD
t (pD

t ,pA
t , Yi,t, Ŷ−i,t).

(7)

The payoff function UD
t (pD

t ,pA
t , Yi,t, Ŷ−i,t) in (7) is given

by

UD
t (pD

t ,pA
t , Yi,t, Ŷ−i,t) =

− F i(a1|Yi,t, Ŷ−i,t)p
D
t (d2|Yi,t, Ŷ−i,t)W

+ F i(a1|Yi,t, Ŷ−i,t)p
D
t (d1|Yi,t, Ŷ−i,t)[−(1 − 2b)W − CrW ]

− F i(a2|Yi,t, Ŷ−i,t)p
D
t (d1|Yi,t, Ŷ−i,t)CrW,

(8)

where F i(a1|Yi,t, Ŷ−i,t)p
D
t (d1|Yi,t, Ŷ−i,t) is the probability

of the case that the attacker launches an attack and the

defender chooses to respond given the observations Yi,t, Ŷ−i,t,

and −(1 − 2b)W − CrW is the payoff of the defender in

this case; Similarly, F i(a1|Yi,t, Ŷ−i,t)p
D
t (d2|Yi,t, Ŷ−i,t) is

the probability of the case that the attacker launches an attack

and the defender chooses to do nothing given the observations

Yi,t, Ŷ−i,t, and −W is the payoff of the defender in this case;

Finally, F i(a2|Yi,t, Ŷ−i,t)p
D
t (d1|Yi,t, Ŷ−i,t) is the probability

of the case that the attacker does not launch an attack and the

defender chooses to respond given the observations Yi,t, Ŷ−i,t,

and −CrW is the payoff of the defender in this case.

2) The Leader’s Problem: As the attacker knows that the

followers will choose their strategies to maximize their corre-

sponding payoffs, it will choose the strategy that maximizes

its own payoff accordingly. However, since the attacker does

not know the actual observations of the entities, it has to

maximize the expected payoff with respect to the distribution

p(Yi,t, Ŷ−i,t), which is given by (6).4 As a result, the attacker

finds its optimal strategy by solving the following optimization

problem:

pA
t (pD

t ) = argmax
pA
t

Te
∑

t=1

UA
t (pA

t ,pD
t (pA

t )), (9)

where Te is the time when the defender successfully responds

to the attacker and UA
t (pA

t ,pD
t (pA

t )) is given by

UA
t (pA

t ,pD
t (pA

t )) =
∑

Yi,t,Ŷ−i,t∈{0,1}N

[

p(Yi,t, Ŷ−i,t)p
A
t (a1)p

D
t (d2|Yi,t, Ŷ−i,t)(W − CaW )

+ p(Yi,t, Ŷ−i,t)p
A
t (a1)p

D
t (d1|Yi,t, Ŷ−i,t)[(1− 2b− Ca)W ]

]

,
(10)

where pAt (a1)p
D
t (d2|Yi,t, Ŷ−i,t) is the probability of the

case that the attacker launches an attack and the defender

chooses to do nothing given the observations Yi,t, Ŷ−i,t and

W − CaW is the payoff of the attacker in this case, while

pAt (a1)p
D
t (d1|Yi,t, Ŷ−i,t) is the probability of the case that

the attacker launches an attack and the defender chooses to

respond given the observations Yi,t, Ŷ−i,t and (1−2b−Ca)W
is the payoff of the attacker in this case. Note that since the

attacker can also obtain the defender’s optimal strategy by

solving (7), both pDt (d1|Yi,t, Ŷ−i,t) and pDt (d2|Yi,t, Ŷ−i,t)
are available to her.

B. The Second-layer Game

The second-layer game models the interaction among the

entities themselves. In this game, an action of each entity j is a

probability pcj,t ∈ [cj , 0.5]
5 with which the entity j would send

out the wrong observation result in order to protect its own

privacy, and cj depends on the privacy policy of each entity

j. The utility function of each entity j is given as follows:

U
D,2
j,t (pc

t) = Rest
i,t (p

c
t)−Rest

i,t (p
c
−j,t, p

c
j,t = 0.5)− λjPL(p

c
j,t),

(11)

where pc
t = (pc1,t, p

c
2,t, · · · , p

c
N,t) is a vector which denotes

the misreport probabilities of all the entities; pc
−j,t denotes

the misreport probabilities of all the entities other than entity

j; Rest
i,t (p

c
t) denotes the estimated payoff of the defender given

pc
t , which will be discussed in Section IV; Rest

i,t (p
c
−j,t, p

c
j,t =

0.5) denotes the estimated reward of the defender when entity

j randomly reports its detection result (i.e., pcj,t = 0.5), and

therefore Rest
i,t (p

c
t) − Rest

i,t (p
c
−j,t, p

c
j,t = 0.5) measures the

defender’s estimated payoff improvement due to the shared

observations from entity j; λj is a constant that measures the

importance of privacy loss, given by

PL(p
c
j,t) = 1−H(pcj,t), (12)

4In this work, it is assumed that the attacker is empowered with the
knowledge of Qj ,∀j ∈ N , to give a conservative analysis.

5In this work, it is assumed that the misreport probabilities are common
knowledge for all the entities. Therefore, it is equivalent for an entity to
misreport with probability pcj,t or 1− pcj,t.



where H(pcj,t) denotes the entropy induced by pcj,t given in

(1). As a result, each entity j has to solve the following

optimization problem:

max
pc
j,t

U
D,2
j,t (pc

t)

s.t. cj 6 pcj,t 6 0.5.
(13)

IV. SOLVING THE GAME

Note that the optimal strategies of both the attacker and the

defender have the same expressions at different time slots.

Therefore, the subscript t will be omitted in this section for

the ease of presentation. In this work, we focus on the scenario

where qj(Yj = 1|st = 1) > qj(Yj = 1|st = 0) for all j
without loss of generality.6

A. The First-layer Leader-follower Game

The leader-follower game is often solved by backward induc-

tion. First, solve the follower’s problem for every possible

strategy taken by the leader. The solution consists of the best

response strategy of the follower as a function of the leader’s

strategy. Then, the leader decides its optimal strategy accord-

ing to the follower’s best responses. The obtained solution

is often referred to as a Stackelberg-Nash equilibrium (SNE)

[21].

Theorem 1. By performing backward induction, the best

response of the defender can be obtained as

pD(d1|Yi, Ŷ−i) =















1 if F i(a1|Yi, Ŷ−i) >
Cr

2b ,

∈ [0, 1] if F i(a1|Yi, Ŷ−i) =
Cr

2b ,

0 if F i(a1|Yi, Ŷ−i) <
Cr

2b .

(14)

Proof: According to (8), the payoff function of the

defender is given by

UD(pD,pA, Yi, Ŷ−i) = −F i(a1|Yi, Ŷ−i)W

+ pD(d1|Yi, Ŷ−i)[2bF
i(a1|Yi, Ŷ−i)− Cr]W.

(15)

Therefore, when F i(a1|Yi, Ŷ−i) > Cr

2b , it is an increas-

ing function of pD(d1|Yi, Ŷ−i); when F i(a1|Yi, Ŷ−i) <
Cr

2b , it is a decreasing function of pD(d1|Yi, Ŷ−i); when

F i(a1|Yi, Ŷ−i) = Cr

2b , it is a constant function. The best

response of the defender is given as (14).

Theorem 2. Combing the payoff function of the attacker, the

SNE of the attacker and the defender can be obtained as

follows:






pA∗ (a1) =
Crp(Yi=1,Ŷ

−i=1|a2)

(2b−Cr)p(Yi=1,Ŷ
−i=1|a1)+Crp(Yi=1,Ŷ

−i=1|a2)
.

pD∗ (d1) = 0.

Proof: See Appendix A.

Corollary 1. With the addition of one more collaborative

entity, the attacker’s optimal attacking strategy (probability)

6It is reasonable to assume that the entities are equipped with good sensing
capabilities. Alternatively, if it is known a prior that some entity is equipped
with bad sensors, one may reverse the detection results.

pA∗ (a1) decreases; with any one of the collaborative entities

increasing its misreport probability, the attacker’s optimal

attacking strategy (probability) pA∗ (a1) increases.

Proof: Let Nc ⊆ N denote an arbitrary set of collabo-

rative entities including the defender and Ŷ
Nc

−i denote the set

of obfuscated observations shared by the collaborative entities

other than the defender. Let f(x) = Cr

(2b−Cr)x+Cr
, then

pA∗ (a1) = f(
p(Yi = 1, Ŷ Nc

−i = 1|a1)

p(Yi = 1, Ŷ Nc

−i = 1|a2)
). (16)

When one more entity (denoted as entity j) chooses to join

the collaboration, the optimal attacking strategy of the attacker

is given by

p̂A∗ (a1) = f(
p(Yi = 1, Ŷ Nc

−i = 1, Ŷj = 1|a1)

p(Yi = 1, Ŷ Nc

−i = 1, Ŷj = 1|a2)
). (17)

Note that f(x) is a decreasing function of x, which means

the sufficient and necessary conditions for p̂A∗ (a1) < pA∗ (a1)
is given by

p(Yi = 1, Ŷ Nc

−i = 1, Ŷj = 1|a1)

p(Yi = 1, Ŷ Nc

−i = 1, Ŷj = 1|a2)
>

p(Yi = 1, Ŷ Nc

−i = 1|a1)

p(Yi = 1, Ŷ Nc

−i = 1|a2)
,

which is equivalent to

p(Ŷj = 1|a1)

p(Ŷj = 1|a2)
> 1, (18)

in which

p(Ŷj = 1|a1)

p(Ŷj = 1|a2)
=

qj(Yj = 1|a1)(1 − pcj) + qj(Yj = 0|a1)pcj
qj(Yj = 1|a2)(1 − pcj) + qj(Yj = 0|a2)pcj

.

It can be shown that when qj(Yj = 1|a1) = qj(Yj =
1|st = 1) > qj(Yj = 1|a2) = qj(Yj = 1|st = 0) and

pcj < 0.5, (18) always holds; furthermore,
p(Ŷj=1|a1)

p(Ŷj=1|a2)
is a

decreasing function of pcj . Therefore, with the addition of

one more collaborative entity, the optimal attacking probability

monotonically decreases. On the other hand, with larger pcj , the

optimal attacking probability monotonically increases. When

pcj = 0.5, it can be shown that
p(Ŷj=1|a1)

p(Ŷj=1|a2)
= 1 and no

collaboration gain can be obtained from entity j.

Remark 1. The SNE obtained above is a weak equilibrium

since when pA(a1) = pA∗ (a1), for any pD(d1) ∈ [0, 1], the

defender will receive the same payoff. To push the defender

to choose its desired strategy (i.e., pD∗ (d1) = 0) so that it can

achieve higher gain, the attacker will set

pA(a1) = pA∗ (a1)− ǫ,

where ǫ is a small positive number. In this case, the corre-

sponding payoff is only slightly less than the desired SNE ob-

tained above when ǫ is sufficiently small, which is acceptable

for the attacker. For the ease of discussion, ǫ is set to be 0 in

the following analysis, but the results obtained still hold when

ǫ > 0, as long as it is sufficiently small.



Remark 2. At the SNE obtained above, the optimal strategy of

the defender is to respond with probability pD∗ (d1) = 0. This is

because the attacker is modeled as the leader in the game and

thus can take the advantage and choose a strategy to force the

entities not to respond. Nonetheless, as is shown in Corollary

1, the existence of these collaborative entities renders the

attacker to choose a lower attacking probability. The more the

collaborative entities, the less likely an attack will be launched.

It is also noticed that there is a tradeoff between collaboration

utility and privacy preservation, concerning the choice of the

obfuscation probabilities.

The corresponding payoffs of the attacker and the defender

at the above SNE are given as follows:






UA
∗

=
Crp(Yi=1,Ŷ

−i=1|a2)(1−Ca)W

(2b−Cr)p(Yi=1,Ŷ
−i=1|a1)+Crp(Yi=1,Ŷ

−i=1|a2)
.

UD
∗

= −
Crp(Yi=1,Ŷ

−i=1|a2)W

(2b−Cr)p(Yi=1,Ŷ
−i=1|a1)+Crp(Yi=1,Ŷ

−i=1|a2)
.

Note that both utility functions are functions of misreport

probabilities pcj , ∀j ∈ {1, 2, · · · , N} ∩ {j 6= i}.

Corollary 2. Collaboration always decreases the payoff for

the attacker and increases the payoff for the defender.

Proof: It can be seen that

UA
∗

= (1− Ca)p
A
∗ (a1)W, (19)

and

UD
∗

= −pA∗ (a1)W. (20)

By Corollary 1, with more collaborative entities, pA∗ (a1)
decreases.

B. The Second-layer Game

Recall that in Section III-B, the utility function of each entity

j is designed as a function of the estimated payoff of the

defender. As discussed earlier, it is assumed that the attacker

has knowledge about the collaboration strategies of all the

entities, and follows the optimal attacking strategy given by

the SNE of the first-layer game. Therefore, the payoff of the

defender at SNE is used as the estimate, i.e., Rest
i (pc) =

UD
∗ (pc), and the utility function of entity j is given by

U
D,2
j (pc) = UD

∗
(pc)−UD

∗
(pc

−j , p
c
j = 0.5)− λjPL(p

c
j).
(21)

In addition, the action set of entity j in the second-layer game

is given by Aj = {pcj|cj 6 pcj 6 0.5}. As a common approach

in literature (e.g., [22, 23]), pure strategy NE is considered

here.

Definition 1. [24] An NE {pc
∗
} = [pc1,∗, · · · , p

c
N,∗] for the

game is a set of strategies that satisfy

UD,2
j (pcj,∗,p

c
−j,∗) ≥ UD,2

j (pcj ,p
c
−j,∗), ∀p

c
j ∈ Aj , j ∈ N ,

(22)

in which pc
−j,∗ = {pck,∗ : k 6= j, k ∈ N} is comprised of the

misreport probabilities of all the other entities except entity j.

Theorem 3. ([24]) For each j ∈ N , let Aj be a closed,

bounded and convex subset of a finite-dimensional Euclidean

space and the payoff function UD,2
j : A1 ×A2 · · · ×AN → R

be jointly continuous in all its augments and strictly concave

in pcj ∈ Aj for every j ∈ N . Then the associated N -person

non-zero-sum game admits an NE in pure strategies.

Given the utility functions and the action sets of all the

entities, relying on Theorem 3, we can prove that the second-

layer game admits a pure strategy NE under certain conditions.

Proposition 1. The second-layer game admits an NE in pure

strategy when the following condition holds:7

{

A(j) ≤ B(i, j), if λj > 0, ∀j ∈ {1, 2, · · · , N} ∩ {j 6= i},

A(j) < B(i, j), if λj = 0, ∀j ∈ {1, 2, · · · , N} ∩ {j 6= i},
(23)

where

A(j) =
p(Yj = 0|a2)− p(Yj = 1|a2)

p(Yj = 1|a1)− p(Yj = 0|a1)
, (24)

B(i, j) =
(2b− Cr)p(Yi = 1|a1)

Crp(Yi = 1|a2)

∏

k 6=i,j

p(Ŷk = 1|a1)

p(Ŷk = 1|a2)
. (25)

Proof: When (23) holds, it can be easily shown that

U
D,2
j (pc) is a continuous and strictly concave function of

pcj (see Appendix B), for j = 1, 2, · · · , N . In addition, the

action set is closed, bounded and convex. By Theorem 3, the

second-layer game admits an NE in pure strategy.

Note that the concavity of the utility function makes prob-

lem (13) a convex optimization problem, which is easy to

solve numerically. Suppose that all the entities solve the cor-

responding convex optimization problems (13) asynchronously

and broadcast their misreport probabilities according to their

own timescale. Let T j
u denote the set of times that entity j

updates its misreport probability, and assume that these sets are

infinite for all the entities (i.e., all the entities update infinitely

often), an asynchronous dynamic update algorithm is proposed

to compute the NE of the second-layer game as in Algorithm

1.

Algorithm 1 Asynchronous Dynamic Update Algorithm

Initialization: set t = 0, pcj = 0 for j = 1, 2, · · · , N
repeat

for all t = 0, 1, ..., N do

if t ∈ T j
u then

entity j solves the convex optimization problem and

updates pcj(t).
else

pcj(t) = pcj(t− 1)
end if

end for

t=t+1

until converged

7Note that this condition always holds when the network is large enough,
i.e., N → ∞.



V. BYZANTINE ENTITIES

The Byzantine attack, in which the malicious nodes delib-

erately send out falsified information to disrupt the normal

information process, is first proposed in [25] and later extended

to various distributed computing applications, including coop-

erative spectrum sensing (CSS) [26], distributed event detec-

tion [27], and distributed source coding [28], among the many

others [29, 30]. Detecting the Byzantine attacks is challenging

since the attackers can change its behavior arbitrarily. Not

surprisingly, the Byzantine attack is also a potential threat to

the privacy-aware collaborative system proposed in this work.

In particular, the Byzantine attackers (e.g., a compromised

entity) may share or inject tampered local detection results

to other entities so as to devastate the entire collaboration

team. In this section, the impact of the Byzantine attacks to

the proposed framework and the corresponding solution are

discussed.

For the discussion in the previous sections, it is assumed

that all the collaborative entities will send their obfuscated

observations and misreport probabilities honestly. Nonetheless,

this assumption may not hold in practice. For example, there

may exist some selfish entities which do not want to share

their obfuscated observations but they still want to gain benefit

from the collaboration scheme. As a result, they generate

their obfuscated observations randomly but send out wrong

misreport probabilities. Even worse, in the case that some

entities are compromised (e.g., taken down by previous attacks

and transformed to the Byzantine attackers), they may send out

wrong observations and misreport probabilities deliberately,

which will mislead the other entities. To represent a general

setting, it is assumed in the following that at most f entities

(except the defender) may be Byzantine faulty and may behave

arbitrarily [25]. In addition, the external attacker can collude

with the Byzantine faulty entities, and therefore knows their

possible behaviors. Furthermore, a fully-distributed setting is

considered, in which all the entities (including the defender)

share their obfuscated observations and misreport probabilities

with all the others. The objective of the entities is to collabo-

ratively estimate the state of the network, and then choose the

optimal responding strategy based on the estimation.

Note that given entity j’s obfuscated observation Ŷj and its

misreport probability pcj , the distribution of the network state

from entity j’s view can be obtained as follows:

F j(s = 1|Ŷj) =
p(Ŷj |s = 1)p(s = 1)

p(Ŷj)
, (26)

F j(s = 0|Ŷj) = 1− F j(s = 1|Ŷj), (27)

in which p(s) is the distribution of the network state deter-

mined by the attacking strategy of the attacker (i.e., p(s =
1|a1) = 1, p(s = 0|a2) = 1); p(Ŷj |s = 1) is the distribution

of the obfuscated observation Ŷj given the network state s = 1,

which can be obtained by (4) and (5); p(Ŷj) is the distribution

of the obfuscated observation Ŷj which is given by

p(Ŷj) = p(Ŷj |s = 1)p(s = 1) + p(Ŷj |s = 0)p(s = 0). (28)

Therefore, after receiving the obfuscated observation and the

misreport probability of entity j, all the entities can obtain a

vector wj = [wj(0), wj(1)] = [F j(s = 0|Ŷj), F
j(s = 1|Ŷj)]

denoting the log of the distribution of the network state

from entity j’s view after local processing. As a result, the

problem can be formulated as a Byzantine vector consensus

(BVC) problem [31, 32]. Considering that exact consensus is

impossible in asynchronous systems in the presence of even a

single crash failure [33], the Approximate BVC is considered,

which must satisfy the following conditions:

•ǫ − Agreement: The elements of the decision vectors at

any two non-faulty entities must be within ǫ of each other,

where ǫ > 0 is a pre-defined constant.

•V alidity: The decision vector at each non-faulty entity

must be in the convex hull of the input vectors at the non-

faulty entities.

•Termination: Each non-faulty entity must terminate

within a finite amount of time.

To solve the Approximate BVC problem, the iterative

algorithm in [31] is adopted, which is mainly based on the

following result by Tverberg [34].

Theorem 4. For any integer f ≥ 0, and for every multiset Y
containing at least (d + 1)f + 1 points in R

d, there exists a

partition Y1, · · · , Yf+1 of Y into f + 1 non-empty multisets

such that the intersection of the convex hulls of the f + 1
multisets is non-empty.

The partition in Theorem 4 is called a Tverberg partition,

and the points in the intersection of the convex hulls of

the multisets are called Tverberg points. The algorithm is

summarized as in Algorithm 2. According to [31], Algorithm

2 is guaranteed to converge to the consensus point when

N ≥ (d + 2)f + 1. Interested readers may refer to [31, 32]

for more details.

To this end, we classify the Byzantine faulty entities into

two types: The first type of faulty entities share incorrect

obfuscated observations and misreport probabilities but follow

the approximate BVC algorithm. Therefore, their final decision

vectors will be the same as those of the non-faulty entities. The

second type of faulty entities do not follow the approximate

algorithm, and their final decision vectors will be different

from the non-faulty entities. Therefore, these faulty entities

can be identified by the defender and their shared information

can be discarded. Based on the Byzantine Vector Consensus

obtained in Algorithm 2, the defender further estimates the

probability of the attacker launching an attack and chooses

the optimal responding strategy. The corresponding algorithm

is summarized as in Algorithm 3.

Theorem 5. Let Ng denote the set of non-faulty entities,

when N ≥ (d + 2)f + 1 and F i(s|Ŷi) = F j(s|Ŷj), ∀i, j ∈
Ng, s ∈ {0, 1}, the only possible decision vector of all non-

faulty entities running Algorithm 2 is identical to their input

vectors.

Proof: According to the V alidity condition, the decision

vector at each non-faulty entity must be in the convex hull of



Algorithm 2 Approximate BVC Algorithm with input vj [0] =
log(wj) at entity j

1. Initialization step: Each entity obtains the initial distribu-

tion of the network state vj [0]. In each round (indexed by

k), the update process is divided into three steps: transmit

step, receiving step and update step.

2. Transmit step: Each entity j broadcasts its current state

distribution vector vj [k − 1] to all the other entities.

3. Receiving step: Each entity j receives the shared vectors

vj [k − 1], ∀j. These vectors form a multiset rj [k].
4. Update step: Form a multiset Zj [k] using the steps below:

5. • Initialize Zj [k] as empty.

6. • Add to Zj[k] any one Tverberg point corresponding

to each multiset C ⊆ rj [k] such that |C| = (d+1)f+1, d =
2. By Theorem 4, such a Tverberg point exists.

7. • Compute new state distribution vector as

vj [k] =
vj [k − 1] +

∑

z∈Zj [k]
z

1 + |Zj [k]|
(29)

8. • Normalize vj [k].
9. Termination: Each non-faulty entity terminates after com-

pleting tend iterations, where tend is a pre-defined constant

chosen according to [32].

Algorithm 3 Approximate BVC based Algorithm for Collab-

orative Security

1. Initialization step: All entities observe the network state,

obfuscate the observations after they determine the misre-

port probabilities, and estimate the distribution of the net-

work state, set as vj [0] = [log(F j(s = 0|Ŷj)), log(F
j(s =

1|Ŷj))], ∀j.

2. Run Algorithm 2 and obtain the decision vector

at Byzantine Vector Consensus v̂j = [log(F̂ j(s =
0|Ŷj)), log(F̂

j(s = 1|Ŷj))], ∀j.

3. The defender identifies the entities whose decision vectors

are different from the decision vector at BVC as faulty

entities and discards the information from them.

4. The defender computes the new
p(Ŷj |s=0)

p(Ŷj |s=1)
, ∀j ∈ Ng using

the equation below:

p(Ŷj |s = 0)

p(Ŷj |s = 1)
=

p(s = 1)

p(s = 0)

[

1

F̂ j(s = 1|Ŷj)
− 1

]

,

in which Ng is the set of non-faulty entities identified

previously.

5. The defender estimates the probability of the attacker

launching an attack (i.e., F i(a1|Yi, Ŷ−i)) using the equation

below:

F i(a1|Yi, Ŷ−i) =
1

1 + p(s=0)
p(s=1)

p(Yi|s=0)
p(Yi|s=1)

∏

j 6=i,j∈Ng

p(Ŷj |s=0)

p(Ŷj |s=1)

.

6. The defender determines the optimal responding strategy

accordingly.

the input vectors at the non-faulty entities. Since all the input

vectors are the same, the convex hull of these input vectors

are identical to themselves.

Corollary 3. When N ≥ (d + 2)f + 1 and F i(s|Ŷi =
1) = F j(s|Ŷj = 1), ∀i, j ∈ Ng, s ∈ {0, 1}, the collaborative

scheme will suffer no loss from the existence of f Byzantine

entities.

Proof: Note that the optimal attacking strategy of the

attacker is given by

pA∗ (a1) =
Cr

(2b− Cr)
p(Yi=1,Ŷ

−i=1|a1)

p(Yi=1,Ŷ
−i=1|a2)

+ Cr

=
Cr

[(2b− Cr)
p(Yi=1|s=1)
p(Yi=1|s=0)

∏

j 6=i,j∈Ng

p(Ŷj=1|s=1)

p(Ŷj=1|s=0)
] + Cr

.

(30)

According to Theorem 5, when N ≥ (d + 2)f + 1 and

F i(s|Ŷi = 1) = F j(s|Ŷj = 1), ∀i, j ∈ Ng, s ∈ {0, 1}, the

decision vector is the same as the input vectors for all the non-

faulty entities. In this case, it can be further verified that for the

non-faulty entities,
p(Ŷj=1|s=1)

p(Ŷj=1|s=0)
remains the same for all j ∈

Ng . For the faulty entities that do not follow the approximate

BVC algorithm, their decision vectors will be different from

those of the non-faulty entities, and thus will be identified

and the information shared by them can be discarded by the

defender. For the faulty entities that follow the approximate

BVC algorithm, their decision vectors will be the same as

those of the non-faulty entities. Therefore, there will be at

least N − f entities been identified as non-faulty (i.e., |Ng| ≥
N − f ). In this case, the expected payoffs of the entities will

be no less than that of the case in which there are only N − f
non-faulty entities. In summary, the collaborative scheme will

suffer no loss from the existence of f Byzantine entities.

Remark 3. In the case that the non-faulty entities have the

same observation capabilities and privacy requirements, the

conditions in Corollary 3 will be satisfied and the proposed

algorithm can guarantee a desired collaboration gain. In other

cases, the performance of the proposed algorithm depends on

the specific settings.

VI. NUMERICAL STUDY

In this section, numerical study is performed to validate the

analytical results.

A. Utility-privacy Tradeoff

In this subsection, we consider a network consisting of N
collaborative entities, and it is assumed that all of them have

high security requirements, with powerful response capability

and insignificant cost of response (i.e., b is large and Cr is

small). Considering these, we set Ca = Cr = 0.1, W = 1000,

b = 0.9, qj(Yj,t|st) = 0.7 if Yj,t = st and qj(Yj,t|st) = 0.3,

otherwise, for j = 1, 2, · · · , N .8

8These parameters are chosen mainly for the illustration purpose. In
practice, these parameters can be set according to relevant applications.
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Fig. 2. Utility-Privacy tradeoff curve.

TABLE II
MISREPORT PROBABILITY WITH RESPECT TO λj

λj 0 5 10 15 20

pcj 0 10% 23% 30% 34%

pc
k

30% 27% 23% 21% 20%

Fig. 2 shows the tradeoff between the average payoff

improvement (i.e., the difference of the utility of the collabo-

rative scheme and that of the non-collaborative case in which

no entity shares its observation with the defender) and the

preserved privacy (i.e., 1 − PL(p
c
j)) of all the entities. It can

be seen that in all the examined scenarios, the collaborative

scheme always enhances the performance, which justifies

Corollary 2. In addition, the payoff improvement achieves its

highest value when the preserved privacy is 0 (i.e., all the

entities share their observations with the defender honestly)

and the payoff improvement vanishes to 0 when the preserved

privacy attains 1 (i.e., all the entities randomly send out

their observations with probability 0.5). Furthermore, when

the number of collaborative entities increases, the entities can

preserve more privacy while achieving the same the payoff

improvement, or equivalently achieve higher collaboration

gain for a given privacy preservation requirement. Intuitively,

when there are more collaborative entities, the defender can

gather more information about whether an attack is launched

or not, given all the shared observations. As a result, once the

attacker launches an attack, the probability of being detected

and triggering the entities to respond is higher, which in turn

decreases the attacker’s attacking probability.

B. Collaboration Strategies

In this subsection, the optimal collaboration strategies of the

three collaborative entities case are examined (i.e., entity j and

entity k share their observations with the defender). Similar

results are observed for the cases of N > 3.

Assuming λk = 10, Table. II shows how λj will influence

the collaboration strategies of both entities. In our model, λj

determines how important privacy is for entity j, and is thus

closely related to its privacy requirement (c.f. (9)). It can be

seen that with different λj , not only the misreport probability
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Fig. 3. Convergence of the Asynchronous Dynamic Update Algorithm.

of entity j changes but also that of entity k. More specifically,

when λj becomes larger, entity j will collaborate with higher

misreport probability while entity k will collaborate with lower

misreport probability. This may be explained as follows: a

larger λj implies that entity j emphasizes more privacy, and

hence it will prefer to increase its misreport probability. In

the meantime, with larger pcj , the second-layer game transits

to another NE point. Recall that the payoff functions of the

entities (i.e., UD
∗ (pc)) are concave functions of both pcj and

pck. As pcj becomes larger, the payoff improvement brought

by decreasing misreport probability more than compensates

the corresponding privacy loss for entity k, which further

encourages it to collaborate will lower misreport probability.

In addition, it is worth mentioning that for different privacy

requirements (i.e., different λj and λk), our model is able

to guide the entities in finding optimal collaboration strategies

that can achieve a suitable balance between utility and privacy.

C. Convergence of the Dynamic Update Algorithm

In this subsection, the convergence of the proposed dynamic

update algorithm is examined. With the same setting as in

Section VI-B and assuming that λj = 7, λk = 10, Fig. 3

shows the misreport probabilities of both entity j and entity

k. It can be seen that the misreport probabilities converge to

the NE (similar results can be observed for different λj and

λk), which verifies the effectiveness of Algorithm 1.

D. Byzantine Entities

In this subsection, the impact of Byzantine entities is exam-

ined. A network that consists of 5 collaborative entities is

considered. It is assumed that one of the entities is faulty and

will always act in favor of the attacker (i.e., it always broad-

casts obfuscated observation Ŷ = 0 and claims the misreport

probability is pc = 0). One the other hand, the other entities

are assumed to have the same privacy requirements (i.e., the

same λ) and thus will misreport with the same probability.

Fig. 4 shows the payoff improvement in terms of different

misreport probabilities. It can be seen that the collaborative

scheme with Approximate BVC algorithm performs better

than the one without using Approximate BVC algorithm, and it
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agrees with the case that there are only 4 non-faulty entities.

This is because when the non-faulty entities have the same

input vectors, the output of the consensus is identical to the

input vectors and therefore the faulty entity has no influence

on the performance of the collaborative scheme as indicated

by Corollary 3.

VII. RELATED WORKS

With the rapid development of sophisticated large-scale at-

tacks, the performance of an individual security system is

rarely satisfactory. As a result, significant research efforts

have been devoted to the security-related information sharing

framework, and various game-theoretic methods have been

developed. For example, [4] proposed a two-player game

model to help understand the benefit of information sharing

and pointed out how the characteristics of the entities affect

the incentives for information sharing. In [5] and [6], a two-

player game between two competing firms which share a

common platform was formulated. By game-theoretic analysis,

the tradeoff between security investment and breach informa-

tion sharing was studied and discussed. [7] used a two-stage

Bayesian game to analyze the information sharing decisions

of the two competing firms. [8] modeled the information

exchange among the firms as a distributed non-cooperative

game and found the best investment and sharing strategies.

[9] considered a set of users in a public cloud who share

the same hypervisors and obtained the necessary conditions

under which a rational user in a public cloud will share his

discovered vulnerabilities by analyzing the NE strategies of

the proposed two-player game. However, these work fail to

consider the influence of the attacker and the privacy issues

induced by information sharing.

Considering the potential privacy leakage in information

sharing, some privacy-aware collaborative security schemes

have been developed. In [11] and [12], privacy of sensitive

data from the distributed alerts could be partially preserved

by the utilization of Bloom filters due to their probabilistic

data structure. In [13] and [16] cryptographic methods were

used to preserve the sensitive information in intrusion alert

data sharing. [14] and [15] proposed the use of entropy guided

alert sanitization, where sensitive attributes of the alerts were

generalized to high-level concepts to introduce uncertainty

into the dataset. Among all these privacy-aware collaborative

security schemes, none of them was able to quantitatively

study the tradeoff between the utility and privacy. Different

from the works mentioned above, our work studies the utility-

privacy tradeoff from a game-theoretic viewpoint, and derives

the NE and SNE which provide the optimal collaboration as

well as response strategies of the collaborative entities for

different privacy requirements.

VIII. CONCLUSIONS AND FUTURE WORKS

In this work, the utility-privacy tradeoff problem in collabora-

tive security is formulated as a repeated two-layer single-leader

multi-follower game which ends once the entities respond to

the attacker successfully. By solving the first-layer leader-

follower game, the utility-privacy tradeoff curve for given

collaboration strategies depending on the privacy policies of

different entities is obtained. By solving the second-layer

game, the collaborative strategies for the entities at NE can

be computed. In addition, the existence of NE of the second-

layer game is proved and an asynchronous dynamic update

algorithm is developed to compute the NE. The impact of

Byzantine entities is also investigated. Further extending this

work to dynamic settings and multiple-attack settings consti-

tute interesting future directions.

APPENDIX A

PROOF OF THEOREM 2

Proof: According to (10),
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t (d2|Yi,t, Ŷ−i,t)(W − CaW )

+ p(Yi,t, Ŷ−i,t)p
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where pDt (d1|Yi,t, Ŷ−i,t) is given by
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(32)

Let
∑

Yi,t,Ŷ−i,t∈{0,1}N

p(Yi,t, Ŷ−i,t)p
D
t (d1|Yi,t, Ŷ−i,t) = pRes

t ,

(33)

we have
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t (pA

t ,pD
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t )) = pAt (a1)(1− Ca − 2bpRes
t )W. (34)

The attacker finds its optimal strategy by solving the following

optimization problem (c.f. (9)):
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A. Case 1

If the attacker chooses its attacking strategies pAt (a1) =
pLt such that pDt (d1|Yi,t, Ŷ−i,t) = 0, ∀(Yi,t, Ŷ−i,t) ∈
{0, 1}N(i.e., pRes

t = 0), ∀t, which means the best response

of the defender is to choose “do nothing”, the expected total

payoff of the attacker (denoted by U(0)) is given by

U(0) =

Te
∑

t=1

UA
t (pA

t ,pD
t (pA

t )) = Tep
A
t (a1)[1− Ca]W,

(36)

where Te is infinite as the defender never responds.

B. Case 2

If the strategies chosen by the attacker are as follows

pAt (a1) =

{

pLt if t /∈ TK ,

pHt if t ∈ TK .

such that

pRes
t =

{

0, if t /∈ TK ,

∈ (0, 1] if t ∈ TK ,

where TK = {t1, · · · , tK} is the set of time instants when the

attacker chooses its attacking strategies pHt such that pRes
t >

0, ∀t ∈ TK and tm < tn, ∀m < n, it can be shown that the

expected payoff of the attacker is always smaller than that of

the Case 1.
1) K = 1: First of all, considering the case that K = 1,

the expected total payoff of the attacker (denoted by U(1)) is

given by

U(1) =

Te
∑

t=1
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t (pA

t ,pD
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t1−1
∑

t=1

[pLt (1 − Ca)W ]
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]
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(37)

where bpHt1p
Res
t1

is the probability that the attacker launches an

attack and the defender responds to the attack successfully and

G(t1) is the payoff of the attacker obtained at time t1 which

is bounded (i.e., G(t1) < ∞). Note that the closed-form of

G(t1) can also be obtained, although it is unnecessary here as

long as it is bounded. Then

U(0)− U(1) = bpHt1p
Res
t1

Te
∑

t=t1+1

pLt [1− Ca]W

+ pLt (1− Ca)W −G(t1).

(38)

Since Te = ∞ and G(t1) < ∞, we have U(0) > U(1).
2) K > 1: Assuming that we now have K = k where

k > 1, if the attacker further chooses to launch an attack with

probability pHtk+1
such that pRes

tk+1
> 0 at time tk+1 > tk. The

expected payoffs of the attacker when t < tk+1 will remain

the same, but the total expected payoffs of the attacker when

t > tk+1 will decrease according to the discussion above. As

a result, U(k) > U(k + 1), ∀k > 1. Therefore

U(0) > U(k), ∀k > 0, (39)

which means the optimal strategy of the attacker is to choose

pAt (a1) = pLt such that pRes
t = 0, ∀t. By (34), when

pRes
t = 0, ∀t, the attacker’s utility function is an increas-

ing function of pAt (a1), therefore, the optimal strategy of

the attacker is pAt (a1) = pA∗ (a1), which corresponds to

F i(a1|Yi,t = 1, Ŷ−i,t = 1) = Cr

2b .

APPENDIX B

CONCAVITY OF SECOND-LAYER GAME UTILITY FUNCTION

Proof: According to the discussion in Section IV,

UD
∗
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where

p(Ŷj = 1|a1)

p(Ŷj = 1|a2)
=

p(Yj = 1|a1)(1 − pcj) + p(Yj = 0|a1)pcj
p(Yj = 1|a2)(1 − pcj) + p(Yj = 0|a2)pcj

.

(40)

Let

a = Crp(Yj = 1|a2), (41)

b = Cr[p(Yj = 0|a2)− p(Yj = 1|a2)], (42)

m = [(2b− Cr)
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∏
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]×
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(43)
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∏

k 6=i,j

p(Ŷk = 1|a1)

p(Ŷk = 1|a2)
]×

[p(Yj = 0|a1)− p(Yj = 1|a1)] + b.

(44)

Then, (40) can be expressed as

UD
∗
(pcj) = −

a+ bpcj
m+ npcj

W. (45)

By the assumption that 2b−Cr > 0, qj(Yj = 1|st = 1) > 0.5,

qj(Yj = 0|st = 0) > 0.5 and pcj < 0.5 for all j, a > 0, b > 0,

and m > 0. Therefore, the concavity of UD
∗ (pcj) is determined

by n.

A. Case 1: n 6= 0

In this case, (45) can be expressed as
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[

b

n
+
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n
− bm

n2

m
n
+ pcj

]

W = −
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m
n
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W,

(46)

where an − bm < 0. Therefore, the sufficient and nec-

essary condition for UD
∗
(pcj) being strictly concave when

pcj ∈ [cj , 0.5] is given by

m

n
< −

1

2
, (47)

which is equivalent to

A(j) < B(i, j), (48)



where

A(j) =
p(Yj = 0|a2)− p(Yj = 1|a2)

p(Yj = 1|a1)− p(Yj = 0|a1)
(49)

B(i, j) =
(2b− Cr)p(Yi = 1|a1)

Crp(Yi = 1|a2)

∏

k 6=i,j

p(Ŷk = 1|a1)

p(Ŷk = 1|a2)
. (50)

Note that given fixed pc
−j , UD

j,∗(p
c
−j , p

c
j = 0.5) is constant.

Furthermore, when λj ≥ 0, −λjPL(p
c
j) is also concave by its

definition in (12). Therefore, U
D,2
j (pc) is a continuous and

strictly concave function of pcj when (48) holds.

B. Case 2: n = 0

When n = 0, we have A(j) = B(i, j). In this case, UD
∗ (pcj) =

−
a+bpc

j

m
W . Apparently, it is concave but not strictly concave in

terms of pcj . In addition, when λj > 0, −λjPL(p
c
j) is strictly

concave. Therefore, U
D,2
j (pc) is a continuous and strictly

concave function of pcj when A(j) = B(i, j) and λj > 0.
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