In today s world, security is a very important issue. People should always keep their belongings safe . To increase security, this research work proposes a IoT-based smart lockers with sensors and access keys with security, verification, and user-friendly tools. This model alerts the user when someone else tries to access their locker and quickly sends an alarm to the authorized user, and provides the option to either grant or reject access to the valid user. In this paper, smart locker is kept registered early to use a locker in the bank, office, home, etc. to ensure safety. The user demands to send an unlock direction with the help of microcontroller NUDE MCU ES P8266 and after accepting the command from the cloud (BLYNK APP), only the user can unlock the closet and access the valuables. This study has also introduced the encroachment detection in lockers with sensors and finally installed smart lockers with fire alarms for security and reliability.
Authored by Bhawna Khokher, Mamta Savadatti, Anish Kumar, T.V. Nikhil, Pranav Raj, Aditya Thakre
Advances in sensor and communication technologies have transformed traditional homes into smart homes, equipped with sensors and actuators for various functionalities like smart lighting, temperature control, irrigation, solar monitoring, entertainment, and security. This transition is powered by the Internet of Things (IoT) architecture, enabling smart home hubs to integrate and control devices with different communication protocols. However, this shift has also introduced new security and privacy issues in the Smart Home IoT (SH-IoT) environment. To address these challenges, new communication protocols with cryptographic features have been developed, and a unified standard called Matter has been created to promote interoperability among different device manufacturers. This paper presents a comprehensive survey of recent trends and advances in the smart home IoT landscape, focusing on communication protocols, their security issues and protection features against vulnerabilities in the SH-IoT environment.
Authored by Ismael Holguin, Sai Errapotu
In the last decade the rapid development of the communications and IoT systems have risen many challenges regarding the security of the devices that are handled wirelessly. Therefore, in this paper, we intend to test the possibility of spoofing the parameters for connection of the Bluetooth Low Energy (BLE) devices, to make several recommendations for increasing the security of the usage of those devices and to propose basic counter measurements regarding the possibility of hacking them.
Authored by Cristian Capotă, Mădălin Popescu, Simona Halunga, Octavian Fratu
With the advancement in Internet of things smart homes are rapidly developing. Smart home is the major key component of Internet of thing. With the help of IOT technology we can stay connected to our home appliance. Internet of Things is the Associations of inserted advancements that. Contained physical protests and is utilized to convey and keenness or collaborate with the internal states or the outer surroundings. Rather than individuals to individuals’ correspondence, IoT accentuation on machine-to-machine correspondence. Smart home connects the physical components of our home with the help of software and sensors so that we can access them via internet from one place. Building home automation includes computerizing a home, likewise, mentioned to as a sensible home or smart home. Domestic machines are an urgent part of the Web of Things whenever they are associated with the web. Controlled devices are commonly connected to a focal center or entryway through a domestic automation framework. A smartphone application, tablet PC, personal computer, wall-mounted terminals, or even a web interface that can be gotten to from off-website over the Web are completely utilized by the program to work the framework. Since all the devices are interconnected and interlinked to one an-another they are lot of chances for security breach and data theft. If the security layer is easily breakable any third-party attacker can easily theft the private data of the user. Which leads us to pay more attention to protecting and securing private data. With the day-to-day development of Smart Home, the safety also got to be developed and updated day to day the safety challenges of the IoT for a wise home scenario are encountered, and a comprehensive IoT security management for smart homes has been proposed. This paper acquaints the status of IoT development, and furthermore contains security issues challenges. Finally, this paper surveys the Gamble factor, security issues and challenges in every point of view.
Authored by S.R Anupriya, Muthumanikandan V
Multiple smart operations, similar as smart technologies in homes, smart metropolises, smart husbandry, and smart health and fitness centres, use a new technology known as the Internet of effects. They correspond of an multifariousness of multiple networked bias that link to multiple detectors and the internet. Among the layers that comprise an IoT armature are the perception subcaste, network subcaste, and operation subcaste. Due to their wide use, these smart biases have fairly minimum protection and are vulnerable to attacks. Comprehensive explanations of operation subcaste security issues and protocols, similar as Advance Message Queuing Protocol(AMQP) in application layer protocol, Constrained operation protocol( CoAP), and REST( Emblematic State Transport).
Authored by K Parvathy, B Nataraj
The Internet of Things (IoT) connects the physical world to the digital world, and wireless sensor networks (WSNs) play a significant role. There are billions of IoT products in the market. We found that security was not the primary focus of software developers. The first step of designing a secure product is to analyze and note down the security requirements. This research paper proposes a modified approach, incorporating elements from the SREP (Software Requirements Engineering Process) and SQUARE (Security Quality Requirement Engineering), to define security requirements for IoT products. The revised process is applied to determine the security requirements of a Smart Lock system that utilizes the publish/subscribe protocol MQTT-SN (Message Queuing Telemetry Transport for Sensor Networks) communication protocol architecture.
Authored by Hemant Gupta, Amiya Nayak
There will be a billion smart devices with processing, sensing, and actuation capabilities that can be connected to the Internet under the IoT paradigm. The level of convenience, effectiveness, and automation for consumers is expected to rise owing to promising IoT applications. Privacy is a significant concern in IoT systems, and it is essential to provide users with full awareness and control over the data collected by these systems. The use of privacy-enhancing technologies can help to minimise the risks associated with data collection and processing and ensure that user privacy is protected. Lack of standards for devices with limited resources and heterogeneous technologies intensifies the security issue. There are various emerging and existing technologies that can help to address the security risks in the IoT sector and achieve a high degree of trust in IoT applications. By implementing these technologies and countermeasures, it is possible to improve the security and reliability of IoT systems, ensuring that they can be used safely and effectively in a wide range of applications. This article’s intent is to provide a comprehensive investigation of the threats and risks in the IoT industry and to examine some potential countermeasures.
Authored by Jaspreet Singh, Gurpreet Singh, Shradha Negi
Intelligent environments rely heavily on the Internet of Things, which can be targeted by malicious attacks. Therefore, the autonomous capabilities of agents in intelligent health-care environments, and the agents’ characteristics (accuracy, reliability, efficiency and responsiveness), should be exploited to devise an autonomous intelligent agent that can safeguard the entire environment from malicious attacks. Hence, this paper contributes to achieving this aim by selecting the eight most valuable features out of 50 features from the adopted dataset using the Chi-squared test. Then, three wellknown machine learning classifiers (i.e. naive Bayes, random forest and logistic regression) are compared in classifying malicious attacks from non-attacks in an intelligent health-care environment. The highest achieved classification accuracy was for the random forest classifier (99.92\%).
Authored by Abdulkreem Alzahrani
In an environment where terrorist group actions are heavily predominate, the study introduces novel modeling tools that really are adept at controlling, coordinating, manipulating, detecting, and tracing drones. Modern humans now need to simulate their surroundings in order to boost their comfort and productivity at work. The ability to imitate a person s everyday work has undergone tremendous advancement. A simulation is a representation of how a system or process would work in the actual world.
Authored by Soumya V, S. Sujitha, Mohan R, Sharmi Kanaujia, Sanskriti Agarwalla, Shaik Sameer, Tabasum Manzoor
As vehicles increasingly embed digital systems, new security vulnerabilities are also being introduced. Computational constraints make it challenging to add security oversight layers on top of core vehicle systems, especially when the security layers rely on additional deep learning models for anomaly detection. To improve security-aware decision-making for autonomous vehicles (AV), this paper proposes a bi-level security framework. The first security level consists of a one-shot resource allocation game that enables a single vehicle to fend off an attacker by optimizing the configuration of its intrusion prevention system based on risk estimation. The second level relies on a reinforcement learning (RL) environment where an agent is responsible for forming and managing a platoon of vehicles on the fly while also dealing with a potential attacker. We solve the first problem using a minimax algorithm to identify optimal strategies for each player. Then, we train RL agents and analyze their performance in forming security-aware platoons. The trained agents demonstrate superior performance compared to our baseline strategies that do not consider security risk.
Authored by Dominic Phillips, Talal Halabi, Mohammad Zulkernine
In coalition military operations, secure and effective information sharing is vital to the success of the mission. Protected Core Networking (PCN) provides a way for allied nations to securely interconnect their networks to facilitate the sharing of data. PCN, and military networks in general, face unique security challenges. Heterogeneous links and devices are deployed in hostile environments, while motivated adversaries launch cyberattacks at ever-increasing pace, volume, and sophistication. Humans cannot defend these systems and networks, not only because the volume of cyber events is too great, but also because there are not enough cyber defenders situated at the tactical edge. Thus, autonomous, machine-speed cyber defense capabilities are needed to protect mission-critical information systems from cyberattacks and system failures. This paper discusses the motivation for adding autonomous cyber defense capabilities to PCN and outlines a path toward implementing these capabilities. We propose to leverage existing reference architectures, frameworks, and enabling technologies, in order to adapt autonomous cyber defense concepts to the PCN context. We highlight expected challenges of implementing autonomous cyber defense agents for PCN, including: defining the state space and action space that will be necessary for monitoring and for generating recovery plans; implementing a suite of models, sensors, actuators, and agents specific to the PCN context; and designing metrics and experiments to measure the efficacy of such a system.
Authored by Alexander Velazquez, Joseph Mathews, Roberto Lopes, Tracy Braun, Frederica Free-Nelson
This paper discusses the design and implementation of Autonomous Cyber Defense (ACD) agents for Protected Core Networking (PCN). Our solution includes two types of specialized, complementary agents placed in different parts of the network. One type of agent, ACD-Core, is deployed within the protected core segment of a particular nation and can monitor and act in the physical and IP layers. The other, ACDCC, is deployed within a colored cloud and can monitor and act in the transport and application layers. We analyze the threat landscape and identify possible uses and misuses of these agents. Our work is part of an ongoing collaboration between two NATO research task groups, IST-162 and IST-196. The goal of this collaboration is to detail the design and roadmap for implementing ACD agents for PCN and to create a virtual lab for related experimentation and validation. Our vision is that ACD will contribute to improving the cybersecurity of military networks, protecting them against evolving cyber threats, and ensuring connectivity at the tactical edge.
Authored by Alexander Velazquez, Roberto Lopes, Adrien Bécue, Johannes Loevenich, Paulo Rettore, Konrad Wrona
This paper highlights the progress toward securing teleoperating devices over the past ten years of active technology development. The relevance of this issue lies in the widespread development of teleoperating systems with a small number of systems allowed for operations. Anomalous behavior of the operating device, caused by a disruption in the normal functioning of the system modules, can be associated with remote attacks and exploitation of vulnerabilities, which can lead to fatal consequences. There are regulations and mandates from licensing agencies such as the US Food and Drug Administration (FDA) that place restrictions on the architecture and components of teleoperating systems. These requirements are also evolving to meet new cybersecurity threats. In particular, consumers and safety regulatory agencies are attracted by the threat of compromising hardware modules along with software insecurity. Recently, detailed security frameworks and protocols for teleoperating devices have appeared. However, a matter of intelligent autonomous controllers for analyzing anomalous and suspicious actions in the system remain unattended, as well as emergency protocols from the point of cybersecurity view. This work provides a new approach for the intraoperative cybersecurity of intelligent teleoperative surgical systems, taking into account modern requirements for implementing into the Surgical Remote Intelligent Robotic System LevshAI. The proposed principal security model allows a surgeon or autonomous agent to manage the operation process during various attacks.
Authored by Alexandra Bernadotte
Nowadays, the Internet has been greatly popularized and penetrated into all aspects of people s lives. In the campus, the level of network construction has also been continuously improved. However, the issue of campus network security has become an important issue that the whole society is concerned about. The research of this paper focuses on this hot spot, and based on the actual situation and characteristics of the campus network in the specific research process, using the relevant network security technology to develop an intelligent monitoring campus network security system optimization model, through the module test and performance test of the system optimization model, the test results verify that the system in this paper can effectively prevent network attacks, monitor campus network security, and ensure the practicability and scientificity of the system.
Authored by Yuanyuan Liu, Jingtao Lan
Cooperative autonomous systems are a priority objective for military research \& development of unmanned vehicles. Drone teams are one of the most prominent applications of cooperative unmanned systems and represent an ideal solution for providing both autonomous detection and recognition within security surveillance and monitoring. Here, a drone team may be arranged as a mobile and cooperative sensor network, whose coordination mechanism shall ensure real-time reconfiguration and sensing task balancing within the team. This work proposes a dynamic and decentralized mission planner of a drone team to attain a cooperative behaviour concerning detection and recognition for security surveillance. The design of the planner exploits multi-agent task allocation and game theory, and is based on the theory of learning in games to implement a scalable and resilient system. Model-in-the-loop simulation results are reported to validate the effectiveness of the proposed approach.
Authored by Vittorio Castrillo, Ivan Iudice, Domenico Pascarella, Gianpaolo Pigliasco, Angela Vozella
Multi-agent systems offer the advantage of performing tasks in a distributed and decentralized manner, thereby increasing efficiency and effectiveness. However, building these systems also presents challenges in terms of communication, security, and data integrity. Blockchain technology has the potential to address these challenges and to revolutionize the way that data is stored and shared, by providing a tamper-evident log of events in event-driven distributed multi-agent systems. In this paper, we propose a blockchain-based approach for event-sourcing in such systems, which allows for the reliable and transparent recording of events and state changes. Our approach leverages the decentralized nature of blockchains to provide a tamperresistant event log, enabling agents to verify the integrity of the data they rely on.
Authored by Ayman Cherif, Youssef Achir, Mohamed Youssfi, Mouhcine Elgarej, Omar Bouattane
In the future, maritime autonomous surface ship(MASS)will be extensively used in maritime cargo transportation. In the process of MASS development, a gradual process of “constrained autonomy to full autonomy” is necessary, so the control system of "man-machine co-driving" is a stage that the MASS must go through. The switching of control rights among autonomous system, shore-based operator and crew on board has also become necessary. At present, there are no standards for the switching mechanism of MASS control right. In order to establish a preliminary MASS control switching mechanism and provide reference for the safety of "man-machine co-driving", this paper makes an analysis and research on the autonomous ship guidelines. The study found that on the basis of the existing autonomous ship specifications, the autonomous ship control switching mechanism can be obtained from the four dimensions of scenario, agent, priority and process. The research results are meaningful to provide reference for the establishment of autonomous ship control switching mechanism and subsequent research.
Authored by Congrui Mu, Wenjun Zhang, Xiangyu Zhou, Xue Yang
Organizations strive to secure their valuable data and minimise potential damages, recognising that critical operations are susceptible to attacks. This research paper seeks to elucidate the concept of proactive cyber threat hunting. The proposed framework is to help organisations check their preparedness against upcoming threats and their probable mitigation plan. While traditional threat detection methods have been implemented, they often need to address the evolving landscape of advanced cyber threats. Organisations must adopt proactive threat-hunting strategies to safeguard business operations and identify and mitigate unknown or undetected network threats. This research proposes a conceptual model based on a review of the literature. The proposed framework will help the organisation recover from the attack. As the recovery time is less, the financial loss for the company will also be reduced. Also, the attacker might need more time to gather data, so there will be less stealing of confidential information. Cybersecurity companies use proactive cyber defence strategies to reduce an attacker s time on the network. The different frameworks used are SANS, MITRE, Hunting ELK, Logstash, Digital Kill Chain, Model in Diamonds, and NIST Framework for Cybersecurity, which proposes a proactive approach. It is beneficial for the defensive security team to assess their capabilities to defend against Advanced Threats Persistent (ATP) and a wide range of attack vectors.
Authored by Mugdha Kulkarni, Dudhia Ashit, Chauhan Chetan
Advanced persistent threat (APT) attack is one of the most serious threats to power system cyber security. ATT\&CK framework integrates the known historical and practical APT attack tactics and techniques to form a general language for describing hacker behavior and an abstract knowledge base framework for hacker attacks. Combined with the ATT\&CK for ICS framework, this paper combed the known attack techniques used by viruses or hacker groups aimed at cyberattacks on infrastructure, especially power systems. Then found the corresponding mitigations for each attack technique, and merged them. Next, we listed the high frequency and important mitigations for reference. At last, we proposed a cyber security defense model suitable for ICS to provide a reference for security teams on how to apply ATT\&ck; other similar cyberattack frameworks.
Authored by Tengyan Wang, Yuanyuan Ma, Zhipeng Shao, Zheng Xu
The rapid growth of communication networks, coupled with the increasing complexity of cyber threats, necessitates the implementation of proactive measures to protect networks and systems. In this study, we introduce a federated learning-based approach for cyber threat hunting at the endpoint level. The proposed method utilizes the collective intelligence of multiple devices to effectively and confidentially detect attacks on individual machines. A security assessment tool is also developed to emulate the behavior of adversary groups and Advanced Persistent Threat (APT) actors in the network. This tool provides network security experts with the ability to assess their network environment s resilience and aids in generating authentic data derived from diverse threats for use in subsequent stages of the federated learning (FL) model. The results of the experiments demonstrate that the proposed model effectively detects cyber threats on the devices while safeguarding privacy.
Authored by Saeid Sheikhi, Panos Kostakos
Advanced Persistent Threats (APTs) have been a major challenge in securing both Information Technology (IT) and Operational Technology (OT) systems. APT is a sophisticated attack that masquerade their actions to navigates around defenses, breach networks, often, over multiple network hosts and evades detection. It also uses “low-and-slow” approach over a long period of time. Resource availability, integrity, and confidentiality of the operational cyber-physical systems (CPS) state and control is highly impacted by the safety and security measures in place. A framework multi-stage detection approach termed “APT$_\textrmDASAC$” to detect different tactics, techniques, and procedures (TTPs) used during various APT steps is proposed. Implementation was carried out in three stages: (i) Data input and probing layer - this involves data gathering and pre-processing, (ii) Data analysis layer; applies the core process of “APT$_\textrmDASAC$” to learn the behaviour of attack steps from the sequence data, correlate and link the related output and, (iii) Decision layer; the ensemble probability approach is utilized to integrate the output and make attack prediction. The framework was validated with three different datasets and three case studies. The proposed approach achieved a significant attacks detection capability of 86.36\% with loss as 0.32\%, demonstrating that attack detection techniques applied that performed well in one domain may not yield the same good result in another domain. This suggests that robustness and resilience of operational systems state to withstand attack and maintain system performance are regulated by the safety and security measures in place, which is specific to the system in question.
Authored by Hope Eke, Andrei Petrovski
Advanced Persistent Threats (APTs) have significantly impacted organizations over an extended period with their coordinated and sophisticated cyberattacks. Unlike signature-based tools such as antivirus and firewalls that can detect and block other types of malware, APTs exploit zero-day vulnerabilities to generate new variants of undetectable malware. Additionally, APT adversaries engage in complex relationships and interactions within network entities, necessitating the learning of interactions in network traffic flows, such as hosts, users, or IP addresses, for effective detection. However, traditional deep neural networks often fail to capture the inherent graph structure and overlook crucial contextual information in network traffic flows. To address these issues, this research models APTs as heterogeneous graphs, capturing the diverse features and complex interactions in network flows. Consequently, a hetero-geneous graph transformer (HGT) model is used to accurately distinguish between benign and malicious network connections. Experiment results reveal that the HGT model achieves better performance, with 100 \% accuracy and accelerated learning time, outperferming homogeneous graph neural network models.
Authored by Kazeem Saheed, Shagufta Henna
Advanced persistent threats (APTs) have novel features such as multi-stage penetration, highly-tailored intention, and evasive tactics. APTs defense requires fusing multi-dimensional Cyber threat intelligence data to identify attack intentions and conducts efficient knowledge discovery strategies by data-driven machine learning to recognize entity relationships. However, data-driven machine learning lacks generalization ability on fresh or unknown samples, reducing the accuracy and practicality of the defense model. Besides, the private deployment of these APT defense models on heterogeneous environments and various network devices requires significant investment in context awareness (such as known attack entities, continuous network states, and current security strategies). In this paper, we propose a few-shot multi-domain knowledge rearming (FMKR) scheme for context-aware defense against APTs. By completing multiple small tasks that are generated from different network domains with meta-learning, the FMKR firstly trains a model with good discrimination and generalization ability for fresh and unknown APT attacks. In each FMKR task, both threat intelligence and local entities are fused into the support/query sets in meta-learning to identify possible attack stages. Secondly, to rearm current security strategies, an finetuning-based deployment mechanism is proposed to transfer learned knowledge into the student model, while minimizing the defense cost. Compared to multiple model replacement strategies, the FMKR provides a faster response to attack behaviors while consuming less scheduling cost. Based on the feedback from multiple real users of the Industrial Internet of Things (IIoT) over 2 months, we demonstrate that the proposed scheme can improve the defense satisfaction rate.
Authored by Gaolei Li, Yuanyuan Zhao, Wenqi Wei, Yuchen Liu
Past Advanced Persistent Threat (APT) attacks on Industrial Internet-of-Things (IIoT), such as the 2016 Ukrainian power grid attack and the 2017 Saudi petrochemical plant attack, have shown the disruptive effects of APT campaigns while new IIoT malware continue to be developed by APT groups. Existing APT detection systems have been designed using cyberattack TTPs modelled for enterprise IT networks and leverage specific data sources (e.g., Linux audit logs, Windows event logs) which are not found on ICS devices. In this work, we propose RAPTOR, a system to detect APT campaigns in IIoT. Using cyberattack TTPs modelled for ICS/OT environments and focusing on ‘invariant’ attack phases, RAPTOR detects and correlates various APT attack stages in IIoT leveraging data which can be readily collected from ICS devices/networks (packet traffic traces, IDS alerts). Subsequently, it constructs a high-level APT campaign graph which can be used by cybersecurity analysts towards attack analysis and mitigation. A performance evaluation of RAPTOR’s APT attack-stage detection modules shows high precision and low false positive/negative rates. We also show that RAPTOR is able to construct the APT campaign graph for APT attacks (modelled after real-world attacks on ICS/OT infrastructure) executed on our IIoT testbed.
Authored by Ayush Kumar, Vrizlynn Thing
With the rapid evolution of the Internet and the prevalence of sophisticated adversarial cyber threats, it has become apparent that an equally rapid development of new Situation Awareness techniques is needed. The vast amount of data produced everyday by Intrusion Detection Systems, Firewalls, Honeypots and other systems can quickly become insurmountable to analyze by the domain experts. To enhance the human - machine interaction, new Visual Analytics systems need to be implemented and tested, bridging the gap between the detection of possible malicious activity, identifying it and taking the necessary measures to stop its propagation. The detection of previously unknown, highly sophisticated Advanced Persistent Threats (APT) adds a higher degree of complexity to this task. In this paper, we discuss the principles inherent to Visual Analytics and propose a new technique for the detection of APT attacks through the use of anomaly and behavior-based analysis. Our ultimate goal is to define sophisticated cyber threats by their defining characteristics and combining those to construct a pattern of behavior, which can be presented in visual form to be explored and analyzed. This can be achieved through the use of our Multi-Agent System for Advanced Persistent Threat Detection (MASFAD) framework and the combination of highly-detailed and dynamic visualization techniques. This paper was originally presented at the NATO Science and Technology Organization Symposium (ICMCIS) organized by the Information Systems Technology (IST) Panel, IST-200 RSY - the ICMCIS, held in Skopje, North Macedonia, 16–17 May 2023.
Authored by Georgi Nikolov, Wim Mees